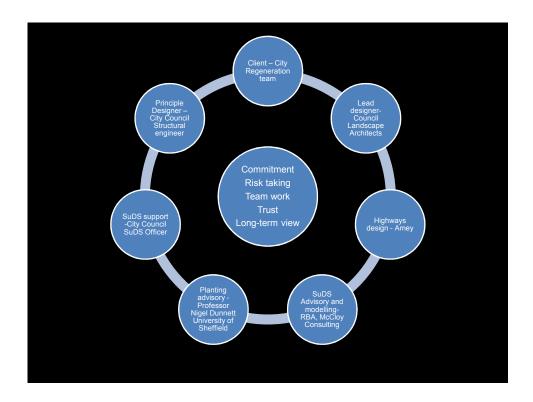
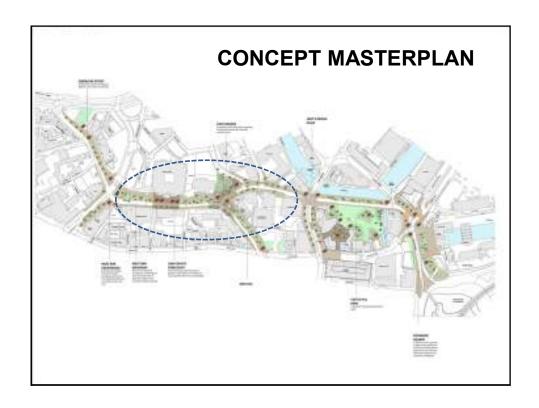


PRINCIPAL CONCEPTS


- Creating a setting for investment perception change
- SUDS managing rainwater discharge to the river
- Sustainable transport and connectivity
- Innovative Meadow planting and developing the green linear route theme
- Reclaiming the highways, activating urban spaces that better reflect the surrounding areas opportunities

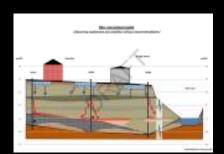


Funding

- ERDF- programme end (07-13) £1million
- Presented an opportunity and a challenge!
- Economic case made for investment
- Sheffield City Region Infrastructure Fund £2.4million – had to underwrite to secure ERDF while case made for SCRIF

SuDS Rationale

- Regeneration driven as opposed to a solution to a significant water problem
- Enhancing new landscapes as water managers
- Water becoming an asset to new landscape
- Future proofing
- Removing impermeable area
- Removing flow from combined sewer – accumulative benefits – CSO and WWTW
- Returning water to natural catchment

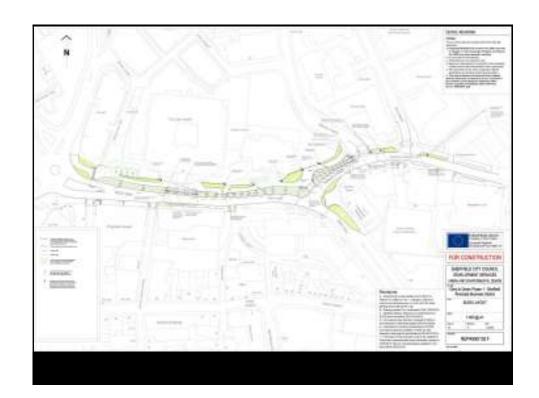

SuDS design advice

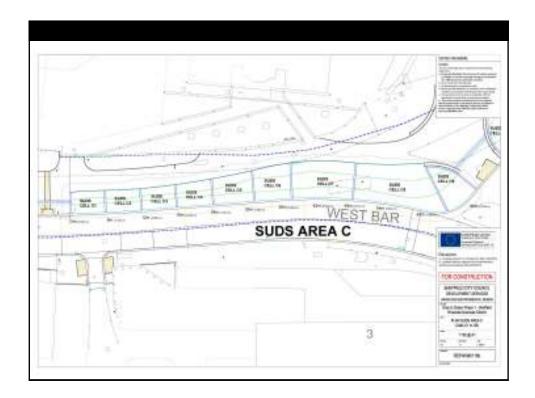
- Mimicking nature keeping water on or near surface;
- Avoiding pushing water underground through conventional gulley/pipes
- Capture and treatment of pollutants
- Interception losses achieved for small events preventing discharge to watercourse
- Controlling flow using shallow landscapes before discharge to river- frequency, rate and volume

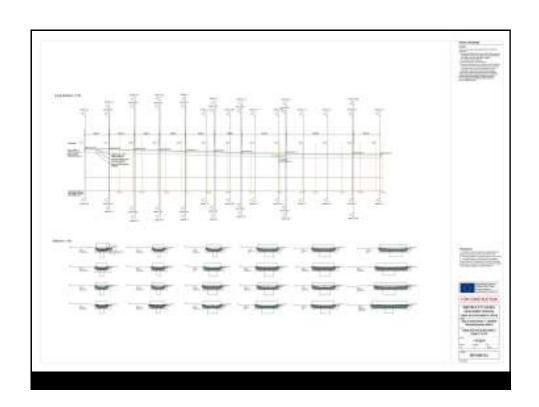
Controlling quantities- infiltration

- Contamination doubts modelling based on sealed system
- Not in favour of sealing planting viability
- Geo-environmental assessment suggested very low risk of mobilisation
- Site excavation revealed some highly impermeable areas.

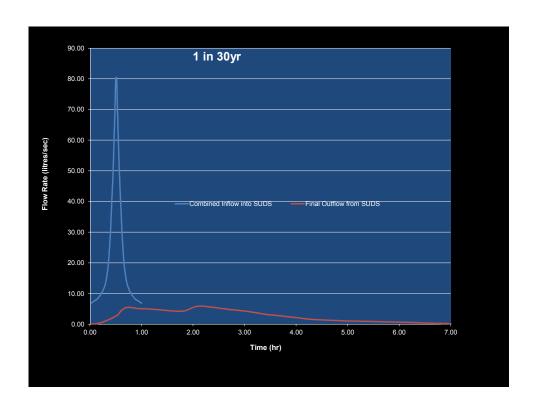
Controlling quantities

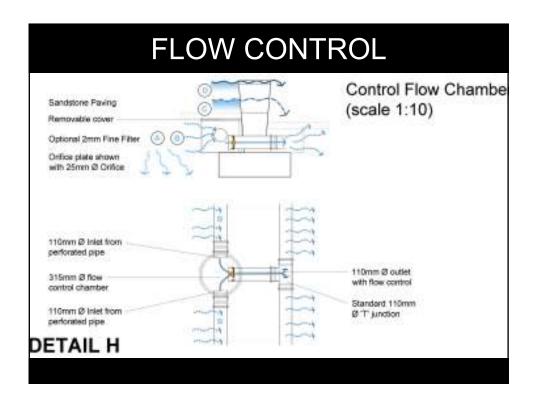

- Capture is through over-edge sheet flow
- Control delivered through 27 almost level swale cells
- Modelling of inflow and transfer down the system informed resultant controls.
- Protected orifice controls allow accumulation of flows followed by drawdown 2-4 hours
- As inflows increase can overtop check dams – notch weir providing further controlled discharge and top weir and whole weir – sized to avoid flooding of highway
- · Robust and fail safe

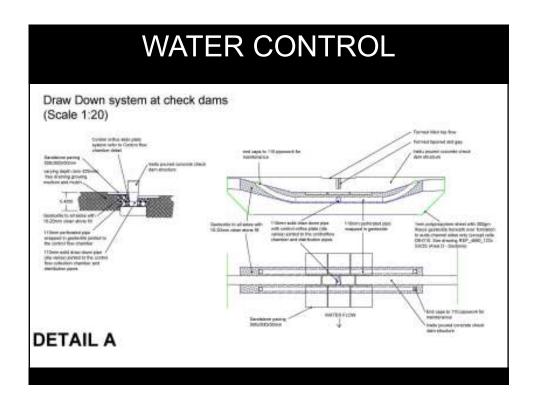



Art of the possible

- Long sections, cross sections and plans formed the basis of physical input to model.
- Topo for contributing area (soft areas taken as 30% effective in generating run-off) Note upslope overland flow on other side of road
- Micro-drainage model run for various return periods and durations using variety of controls to determine volumes
- 30mm -75mm orifice 30mm -50mm notch width
- Initially sized based on 1 in 30 return
- Modelled as a series of under-drained swales in series - averaged width and slope
- Void ratio of growing area material 30% in swale base

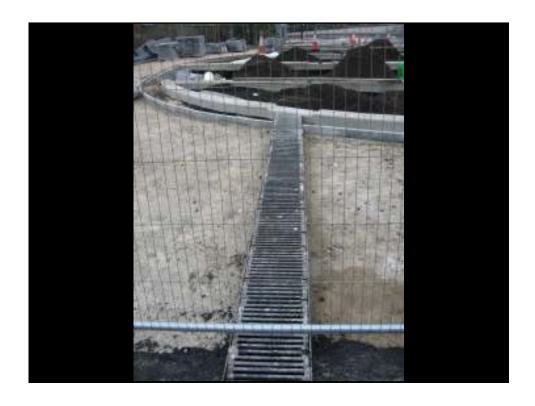


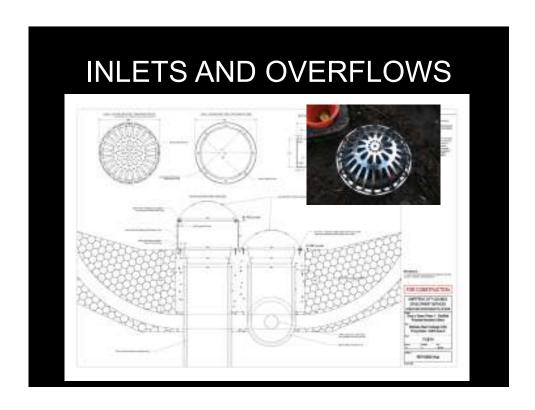



		000/		
1 in 100 plus 30% for climate chan				
Swale Cell	Inflow (I/s) (direct runoff to cell)	Max Controlled Outflow Rate (I/s)	Max Overflow Rate (I/s)	Max Volume retained (m^3)
A1	21.7	3.9	8.1	6.9
A2	8	5.4	0	10
A3	5.1	5.2	0	9.8
B1	42	14	9.3	8.1
B2	7.8	8.5	9.7	8.7
C1	12.2	12	8.7	4
C2	3.5	10.9	8.9	4.1
C3	2.4	16	5.3	2.5
C4	3.3	13.4	8.1	2.5
C5	1.7	15.1	7.5	4.7
C6	1.5	14	6.5	6.8
C7	2.9	9.8	7.5	16.6
C8	3.6	5.3	12.6	14
C9	3.5	8.8	6.7	9.4
D1	16.6	9.4	11.7	2.5
D2	3.6	7.6	13.3	3.2
D3	2.8	6.9	11.7	2.7
D4	1	11.3	5.3	3.5
D5	0.6	7.6	9.3	1.5
D6	0.5	9.4	7.7	1.1
D7	0.5	4.5	13.1	0.4
D8	0.4	5.8	12.4	0.5
D9	0.3	6.9	11.5	0.8
D10	0.3	11.5	6.9	2.3
D11	0.2	17.6	0	2.3
E1	1.2	18.1	0	3.2

Summary of results

- Peak inflow for the 1 in 30 year 60 minute rainfall event is reduced from 80l/s to 9l/s
- Peak inflow for the 1 in 100 year 60 minute rainfall event is reduced from 115l/s to 14l/s
- Peak inflow for the 1 in 100 year (+30% CC) 60 minute rainfall event is reduced from 150l/s to 18l/s
- 225mm pipe to Don caters for 18l/s none to combined sewer
- Not greenfield rate but significant reduction





Management

- Scheme has been an overall reduction in management resource need for the area
- Initial 3 years of experimental maintenance to refine the optimal regime to take forward in the future
- Cut and collect is main activity
- Provided an opportunity for Amey and Sheffield Council to resolve management issues for a bespoke SuDS

Impacts

- · Yorkshire Water taken interest in scheme
- Useful to revisit model as design changes during construction and an allowance for infiltration needed
- What benefits can be attributed to these works, e.g. resilience of combined sewer, microclimate?

Grey to Green 2

- Future challenge making space for cycling

 new policy for cycling emerged after
 design and associated funding case was complete.
- Shared surface for less confident /family cycling
- Very much reduced traffic on highway for others

