THE SUSTAINABLE DRAINAGE STRATEGY FRAMEWORK

CONTENTS

1 Introduction
2 Partnership
3 Uncertainty
4 Risk Based
5 Whole Life Costs & Benefits
6 Innovative & Sustainable
7 Live Process
INTRODUCTION

BACKGROUND
WHAT IS A SUSTAINABLE APPROACH?

Sustainability
• responsible and proactive decision-making
• innovation that maximises benefits
• maintains balance between Economics, Ecology, Politics and Culture
• ensure a desirable planet for all species now and in the future
INTRODUCTION
DRAINAGE STRATEGY FRAMEWORK

- Defra “Water for Life” white paper recognised the need for strategic approach to drainage planning
- EA and Ofwat
- Drainage Strategy Framework (DSF)
 - 6 Principles
 - Catchment Scale
- Provide confidence that outcomes can be achieved in the long term

PARTNERSHIP

Better together
“Water and Sewerage companies cannot develop optimal Drainage Strategies on their own and therefore partnership is key.”

Partnership

<table>
<thead>
<tr>
<th>No.</th>
<th>Good Practice</th>
<th>Example references</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Be alert to opportunities for joint solutions and/or shared funding by understanding local plans for: new development; re-development; improving street furniture and public open space; improving parks and green infrastructure. Understand Lead Local Flood Authority and Environment Agency programmes for the management of flood and pollution risks.</td>
<td>A guide to joint funding of local flood risk management intervention has been published by Defra and provides relevant advice to water and sewerage companies and other partners.</td>
</tr>
<tr>
<td>5</td>
<td>Consider water and sewerage company funded solutions which deliver third-party non-sewerage assets that result in the long term, least cost delivery of outcomes (e.g. Water and sewerage company funding of household rain barrels and rain gardens to prevent surface water entering sewers).</td>
<td></td>
</tr>
</tbody>
</table>
UNCERTAINTY

No Crystal Ball
UNCERTAINTY

“Strategies should explain the reliability of data and knowledge about current and future performance of drainage systems. They should explain what steps are planned to improve this understanding and how this will benefit customers.”

• Drainage Area Studies (DAS)

<table>
<thead>
<tr>
<th>No.</th>
<th>Good Practice</th>
<th>Example reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>In the face of significant uncertainties about future demands on the drainage system and their consequences, the Drainage Strategy should identify low-regrets interventions (i.e. ones that are robust no matter what the future holds) and ensure that solutions can be adapted if greater certainty is achieved. For example, through quickening the pace of SuDs retrofit activities or using (previously identified and secured) land to extend underground storage facilities. Strategies which remove surface water from the sewerage networks provide ‘headroom’ for unpredictable increases in demand from population and climate change.</td>
<td>Designing Resilient Cities A guide to good practice DR Lomardi et al, HIS BRE Press.</td>
</tr>
</tbody>
</table>
UNCERTAINTY

- Newcastle City Council
 Surface Water
 Management Plans
 (Ouseburn & Newcastle
 City Centre)

RISK BASED

Moving to be proactive
“Planning, operational and investment activities should be based on consideration of the probability and consequence of inadequate drainage function (risks) as these relate to the achievement of measures that demonstrate delivery of outcomes. A risk based strategy ensures that investment is made where risks are the greatest.”

• Community Action Plans (CAPs)

• Hierarchy of solutions
 1. Remove
 2. Retain (property)
 3. Divert
 4. Store

Adopted on all network solutions
“Strategies should promote a series of interventions which in view of the quantified uncertainties are most likely to result in performing indicators which demonstrate the achievement of outcomes at the lowest cost to customers and the community more widely. Costs relate to capital and operational expenditure and the monetised impacts of drainage failures such as flooding and pollution. Benefits relate to the reduction in risks from drainage failures such as flooding and pollution but should also include wider societal benefits such as those calculated using a ‘Payments for Ecosystems Services’ approach.”

- Killingworth
WHOLE LIFE COSTS & BENEFITS ALIGNMENT WITH OTHER STRATEGIES / PLANS

Surface Water Management Plan
- Identifies Killingworth, Longbenton, and West Moor as Critical Drainage Areas
- Recommends downstream receptors of Future Development are considered
- Recommendation for a Surface Water Communication and Engagement Plan

Biodiversity Action Plan
- Identifies a target of improving habitats along watercourses
- Recommends SuDS to minimise high flows and pollution from surface water
- Identifies targets to create new ponds, reedbeds and native woodlands

Green Infrastructure Strategy
- Encourages incorporating green space within new development to slow runoff and attenuate flows
- Recommends tree streets, green roofs, and tighter policies on sealing surfaces in residential areas

Climate Change & Carbon Management Strategies
- Highlights the link to more intense rainfall events and increased flood risk
- Encourage water saving at home
- Integrated approach to land development through partnership
- Coordinate and share flood defence investment

WHOLE LIFE COSTS & BENEFITS RE-ASSESSMENT

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Reduces Flooding</th>
<th>Improves Water Quality</th>
<th>Reduces Wastewater Treatment Needs</th>
<th>Facilitates Growth</th>
<th>Reduces Transport Disruption</th>
<th>Increases Recreational Opportunities</th>
<th>Enhances Habitat</th>
<th>Enhances Amenities</th>
<th>Cultivates Public Education Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Killingworth Lake Disconnection from Sewer System & Attenuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“The DSF promotes the full evaluation of alternatives to traditionally engineered sewerage solutions to test whether these offer lower whole life cost options of better responses to uncertainty. This may include real time control, storm retrofit techniques, education to enable customers to change behaviour...........”

- Suds for schools
- Education sessions
- Free water butts
LIVE PROCESS

Learning and growing…
THANK YOU

Eilis Furlong
eilis.furlong@nwl.co.uk
Richard Woodhouse
richard.woodhouse@nwl.co.uk