URS

Lambeth Highways SuDS

Rain Garden Modelling Report - Final

April 2013

47062094

Prepared for: Lambeth Council

UNITED KINGDOM & IRELAND

REVIS	REVISION SCHEDULE							
Rev	Date	Details	Prepared by	Reviewed by	Approved by			
01	December 2012	47062094 Draft Report	Mark Crussell Senior Assistant Hydrologist	Richard Marshall Principal Engineer Sarah Kelly Senior Water Specialist	Jon Robinson Technical Director			
02	April 2013	47062094 Final Report (incorporating comments from Lambeth Borough Council and EPG)	Mark Crussell Consultant	Richard Marshall Principal Engineer	Jon Robinson Operations Director			

URS Scott House Alencon Link Basingstoke RG21 7PP

Tel 01256 310 200

www.ursglobal.com

Limitations

URS Infrastructure & Environment UK Limited ("URS") has prepared this Report for the sole use of **Lambeth Council** ("Client") in accordance with the Agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by URS.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by URS has not been independently verified by URS, unless otherwise stated in the Report.

The methodology adopted and the sources of information used by URS in providing its services are outlined in this Report. The work described in this Report was undertaken between **June 2012 and April 2013** and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this Report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

URS disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to URS' attention after the date of the Report.

Certain statements made in the Report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. URS specifically does not guarantee or warrant any estimate or projections contained in this Report.

Copyright

© This Report is the copyright of URS Infrastructure & Environment UK Limited. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

TABLE OF CONTENTS

1	INTRODUCTION 1
1.1	Background 1
1.2	Rain Gardens1
1.3	Rain Garden Modelling Study2
2	MODELLING APPROACH
2.1	Overview 3
2.2	Existing Scenario3
2.3	Rain Garden Scenario 3
2.4	Rain Garden Model Parameters 4
2.5	Model Runs 4
2.6	Assumptions and Limitations5
3	RESULTS
3.1	Overview 6
3.2	Chatsworth Way7
3.2.1	2 Year Critical Storm7
3.2.2	30 Year Critical Storm
3.2.3	100 Year Critical Storm9
3.3	Ardlui Road 10
3.3.1	2 Year Critical Storm 10
3.3.2	30 Year Critical Storm 11
3.3.3	100 Year Critical Storm 12
4	PREDICTOR TOOL
5	CONCLUSIONS 14
5.1	Further Work 14
APPENDI)	(A – TYPICAL LAYOUT & SECTION
APPENDI)	(B – TOPOPGRAPHIC SURVEY 17
APPENDI)	(C – WINDES OUTPUTS 18
APPENDI)	(D – LAMBETH RAIN GARDEN PREDICTOR TOOL 19

1 INTRODUCTION

1.1 Background

URS was commissioned by Lambeth Council to assess the flood alleviation benefits of 'Rain Gardens' proposed along Chatsworth Way and Ardlui Road in Lambeth.

This package of works forms part of the wider Lambeth Highways SuDS project, being undertaken by a consortium of companies, as outlined below:

- Design of Rain Garden Scheme undertaken by The Environmental Protection Group Ltd. (EPG);
- Modelling of SuDS Scheme undertaken by URS;
- Public Engagement / Awareness undertaken by Sustrans;
- Project Support and production of a Case Study Report for the project undertaken by URS.

1.2 Rain Gardens

In its simplest form, a Rain Garden is a shallow depression, with absorbent, yet free draining soil and planted with vegetation that can withstand occasional temporary flooding. Rain gardens are designed to mimic the natural water retention of undeveloped land and to reduce the volume of rainwater running off into drains from impervious areas and treat low level pollution.¹

For the Lambeth Highways SuDS scheme, rain gardens, as kerb build outs (Figure 1.1), are proposed upstream of existing road gullies in Chatsworth Way and Ardlui Road in Lambeth. The Rain Gardens will intercept surface water runoff at or close to source; and allow storage, filtration, infiltration and evapotranspiration (evaporation from soil and from vegetation) so that the amount of runoff discharging to the sewer network is greatly reduced.

Source: Rain Garden Guide¹

Figure 1.1: Example Highway Rain Garden in Portland Oregon, United States

¹ Bob Bray, Dusty Gedge, Gary Grant & Lani Leuthvilay, 2012, Rain Garden Guide. <u>www.raingardens.info</u>

1.3 Rain Garden Modelling Study

This modelling study assesses the flood alleviation benefits of selected Rain Gardens along Chatsworth Way and Ardlui Road (Figure 1.2) during the 2 year, 30 year and 100 year critical duration storm events. The assessment is based on a comparison of maximum outflow and discharge volume to existing gullies, pre- and post-implementation of the proposed Rain Gardens.

Figure 1.2: Modelled Rain Garden Locations for Lambeth Highways SuDS Scheme

Computer models of two of the proposed Rain Gardens have been built in Micro Drainage WinDes, based on typical layout and section drawings provided by Environmental Protection Group (EPG) (see Appendix A). A topographic survey with all of the potential Rain Garden locations is provided in Appendix B.

The modelling carried out compares the 'worst case' slope gradient (i.e. the steepest) Rain Garden along Ardlui Road with the 'best case' slope gradient (i.e. the most level) Rain Garden with a similar drainage catchment area along Chatsworth Way. This approach has been adopted to assess how Rain Gardens will function in 'best' and 'worst case' scenarios when considering the topography across the study area (see Figure 1.2).

In order to provide an indication of how sensitive the design / model is to different infiltration rates, a range of scenarios, ranging from low infiltration to high infiltration, has been considered.

2 MODELLING APPROACH

2.1 Overview

The WinDes DrawNet and Simulation modules have been used to build the two individual Rain Garden models and assess the impact of the proposed Rain Gardens in terms of rainwater source control and potential flood alleviation.

The existing baseline and Rain Garden scenarios have been tested against a number of different storm durations for the 2 year, 30 year and 100 year storm events. The storm duration results have been analysed to identify the critical 'worst case' storm when considering maximum discharge rate (l/s) and maximum discharge volume (m^3).

2.2 Existing Scenario

To represent the existing baseline (no Rain Garden) scenario, sections of the existing Thames Water sewer network, including road gullies, have been modelled immediately upstream and downstream of the two selected Rain Gardens, one along Chatsworth Way and the other along Ardlui Road.

2.3 Rain Garden Scenario

The key Rain Garden design parameters (see Appendix A for typical layout and sections) represented in the model are:

- Depth of surface storage 150 mm;
- Depth of Root Zone 150 mm;
- Depth of Geocellular storage 150 mm;
- Check dams ~ 25 mm below existing kerb top level.

The two Rain Gardens have been represented using a series of surface storage units (tank / ponds) and below ground cellular storage, connected by a nominal pipe network (typically 100 mm to 150 mm in diameter), branching off from the existing gully. Upstream pipes represent each Rain Garden kerb inlet and have been assigned an appropriate catchment area within DrawNet, based on review of the topographic survey.

A series of online controls (weirs) have been used to represent check dams, which control surface water levels within the separate compartments. A small orifice (0.02 m diameter) has been used to represent the infiltration rate of surface water from the surface storage sections down into the cellular storage layer.

Once all of the surface storage units have been filled, the weir at the downstream end of the Rain Garden is overtopped and any further surface water finally drains to the Thames Water sewer, via the existing gully pot.

WinDes outputs, including a plan view of the individual Rain Garden pipe network and tabular details of the network, storage structures and online controls, are provided in Appendix C.

A summary of the key model parameters used to represent the individual Rain Gardens along Chatsworth Way and Ardlui Road are provided in the following sub-sections.

2.4 Rain Garden Model Parameters

Tables 2.1 and 2.2 provide the parameters used for the Chatsworth Way and Ardlui Road Rain Garden models.

TABLE 2.1: CHATSWORTH WAY RAIN GARDEN MODEL PARAMETERS						
Longitudinal fall (m)	0.1	Number of bays	1			
Gully catchment area (m	²) 130	Diameter of outfall pipe to sewer (mm)	150			
Below ground (WinDes cellu			ge volume (m ³) tank/pond)			
Structure 1	1.74	Structure 2	1.34			
Total	1.74	Total	1.34			

TABLE 2.2: ARDLUI R	TABLE 2.2: ARDLUI ROAD RAIN GARDEN MODEL PARAMETERS						
Longitudinal fall (m)	Longitudinal fall (m) 0.48		3				
Gully catchment area (m	²) 180	Diameter of outfall pipe to sewer (mm)	150				
Below ground (WinDes cellu	U	Surface storage volume (m ³) (WinDes pond)					
Structure 1	0.62	Structure 2	0.54				
Structure 3	Structure 3 0.86		0.57				
Structure 5	0.23	Structure 6	0.23				
Total Volume	1.71	Total Volume	1.34				

2.5 Model Runs

For both of the selected locations, the following scenarios have been modelled:

- Existing baseline (no Rain Garden);
- Rain Garden (low infiltration 0.001 m/hr);
- Rain Garden (medium infiltration 0.01 m/hr);
- Rain Garden (high infiltration 0.1 m/hr).

2.6 Assumptions and Limitations

The following assumptions and limitations relate to the modelled Rain Gardens:

- A limitation of the study is the selected Rain Gardens (based on 'worst case' and 'best case' slope gradients) have below average² gully catchment areas compared to other potential Rain Garden locations within the study area (see Appendix B). Rain Gardens with larger gully catchments receive greater volumes of runoff and therefore the percentage reduction in discharge volume entering the sewer is likely to be less;
- A limitation of modelling each Rain Garden in isolation is that WinDes assumes that when the volume of water exceeds the capacity of the Rain Garden, any flood water is stored locally on the surface and then fed back into the system as soon as capacity becomes available. However, in a 'real life' scenario excess water is likely to continue to flow down the road, entering a downstream Rain Garden or gully;
- The model assumes that all surface water generated within the gully catchment drains to the Rain Garden via the kerb inlets (i.e. no runoff by-passes the Rain Garden). However, in a 'real life' scenario some water is likely to by-pass the Rain Garden inlets, however this loss is unlikely to affect the results significantly;
- A standard gully pipe diameter of 150 mm has been assumed for the existing downstream gully pipe connecting the Rain Garden to the Thames Water sewer.

 $^{^{2}}$ The average gully catchment area for Rain Gardens within the study area is approximately 250 m 2 (gully catchment areas range from 100 m 2 to 500 m 2)

3 **RESULTS**

3.1 Overview

The simulated maximum discharge rates and volumes during the 2 year, 30 year and 100 year critical duration storms have been taken at the existing downstream gully pipe, where the Rain Garden connects back into the sewer network. A comparison of results at this downstream location has been used to indicate the benefits provided by the Rain Gardens.

Tabulated results for the Chatsworth Way and the Ardlui Road Rain Garden are provided in Tables 3.1 to 3.3 and Tables 3.4 to 3.6 respectively. The gully pipes status, as indicated in the bullet points below, is also provided:

- 'ok' when the maximum water level is lower than the pipe's soffit;
- 'surcharged' when the maximum water level is above the pipe's soffit;
- 'flood' when the maximum water level is above the upstream manhole cover (i.e. the capacity of the Rain Garden is exceeded).

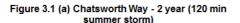
The storm durations included in the assessment have been limited to the 24 hour storm duration (1440 min). Storm durations greater than this are generally more intermittent and/or less intense in nature, and not suitable for consideration at the gully catchment scale.

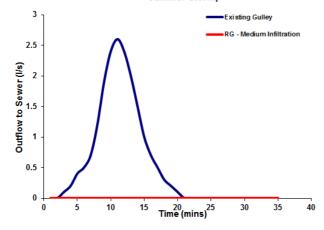
Graphs have been produced for the critical storm duration, comparing downstream hydrographs for the existing gully pipe and Rain Garden scenario. The medium infiltration Rain Garden has been selected to illustrate the benefits of the scheme.

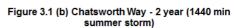
3.2 Chatsworth Way

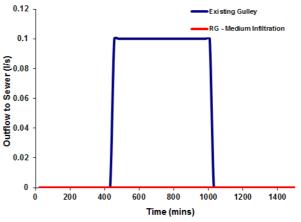
This section presents the results of modelling the Chatsworth Way Rain Garden.

3.2.1 2 Year Critical Storm


Table 3.1 and Figures 3.1(a) and 3.1(b) present the results of modelling the Chatsworth Way Rain Garden for the 2 year critical storm.


Table 3.1 and Figure 3.1 (a) indicate that negligible flow discharges to the sewer via the downstream gully pipe occurs during the maximum outflow 2 year event once the Chatsworth Way Rain Garden is implemented.


Table 3.1 indicates that during the maximum discharge volume 2 year event the Rain Garden scenario reduces the volume discharged to the sewer by a minimum of 61% (low infiltration scenario). During the medium and high infiltration Rain Garden scenario the discharge volume to the sewer is reduced by 75% and 88% respectively with negligible discharge to the downstream sewer network (Figure 3.1 (b)).


TABLE 3.1: CHATSWORTH WAY - 2 YEAR CRITICAL STORM

		Maximum	discharge rate	s	Maximum discharge volumes			
Rain Garden (RG) description	Max rate (l/s)	Critical storm duration (min)	Pipe Status	Discharge rate reduction (%)	Maximum discharge volume (m ³)	Critical storm duration (min)	Pipe Status	Discharge volume reduction (%)
Existing gully	2.6	15 Summer	ok	NA	4.3	1440 Winter	ok	NA
RG - low infiltration (0.001 m/hr)	0.1	1440 Summer	ok	96	1.7	1440 Winter	ok	61
RG - medium infiltration (0.01 m/hr)	0.1	120 Summer	ok	96	1.1	1440 Summer	ok	75
RG - high infiltration (0.1 m/hr)	0.1	120 Summer	ok	96	0.5	1440 Winter	ok	88

3.2.2 30 Year Critical Storm

Table 3.2 and Figures 3.2(a) and 3.2(b) present the results of modelling the Chatsworth Way Rain Garden for the 30 year critical storm.

Table 3.2 and Figure 3.2 (a) indicates that maximum discharge to the sewer is limited to 3.9 l/s for the maximum outflow 30 year event Rain Garden scenarios. Figure 3.2 (a) indicates that no discharge to the sewer occurs until 10 minutes.

Table 3.2 indicates that during the maximum discharge volume 30 year event the Rain Garden scenario reduces the volume discharged to the sewer by a minimum of 34% (low infiltration scenario). During the medium to high infiltration Rain Garden scenario the discharge volume to the sewer is reduced by 47% and 85% respectively.

Figure 3.2 (b) indicates how the Rain Garden attenuates runoff for the first 700 minutes of the storm, after which the Rain Garden capacity is exceeded and runoff discharges to the sewer.

TABLE 3.2: CHATSWORTH WAY - 30 YEAR CRITICAL STORM

		Maximum	discharge rate	s	Maximum discharge volumes			
Rain Garden (RG) description	Max rate (l/s)	Critical storm duration (min)	Pipe Status	Discharge rate reduction (%)	Maximum discharge volume (m ³)	Critical storm duration (min)	Pipe Status	Discharge volume reduction (%)
Existing gully	6.4	15 Summer	ok	NA	8.9	1440 Summer	ok	NA
RG - low infiltration (0.001 m/hr)	3.9	15 Summer	ok	39	5.9	1440 Summer	ok	34
RG - medium infiltration (0.01 m/hr)	3.9	15 Summer	ok	39	4.7	1440 Summer	ok	47
RG - high infiltration (0.1 m/hr)	3.9	15 Summer	ok	39	1.3	360 Summer	ok	85

Figure 3.2 (a) Chatsworth Way - 30 year (15 min summer storm)

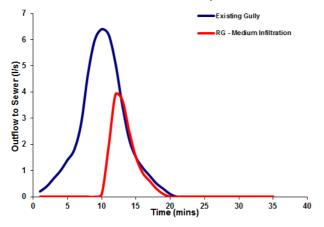
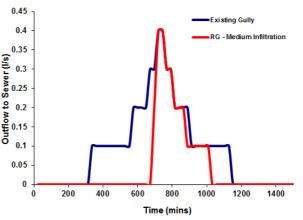



Figure 3.2 (b) Chatsworth Way - 30 year (1440 min summer storm)

3.2.3 100 Year Critical Storm

Table 3.3 and Figures 3.3(a) and 3.3(b) present the results of modelling the Chatsworth Way Rain Garden for the 100 year critical storm.

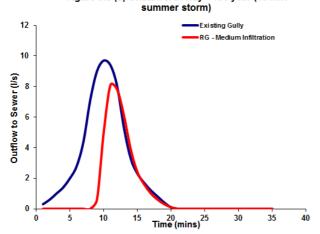
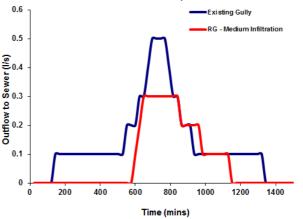

Table 3.3 indicates that maximum discharge to the sewer is limited to 8.1 l/s for the 100 year event Rain Garden scenarios (16% reduction compared to baseline). Figure 3.3 (a) indicates that no discharge to the sewer occurs until 8 minutes.

Table 3.3 indicates that during the maximum discharge volume 100 year event the Rain Garden scenario reduces the volume discharged to the sewer by a minimum of 26% (low infiltration scenario). During the medium to high infiltration Rain Garden scenario the discharge volume to the sewer is reduced by 36% and 73% respectively. Figure 3.3 (b) indicates how the Rain Garden attenuates runoff until its capacity is reached after approximately 600 minutes.


TABLE 3.3: CHATSWORTH WAY - 100 YEAR CRITICAL STORM

		Maximum	discharge rate	s	Maximum discharge volumes			
Rain Garden (RG) description	Max rate (I/s)	Critical storm duration (min)	Pipe Status	Discharge rate reduction (%)	Maximum discharge volume (m ³)	Critical storm duration (min)	Pipe Status	Discharge volume reduction (%)
Existing gully	9.7	15 Summer	ok	NA	11.9	1440 Summer	ok	NA
RG - low infiltration (0.001 m/hr)	8.1	15 Summer	ok	16	8.8	1440 Summer	ok	26
RG - medium infiltration (0.01 m/hr)	8.1	15 Summer	ok	16	7.6	1440 Summer	ok	36
RG - high infiltration (0.1 m/hr)	8.1	15 Summer	ok	16	3.3	480 Summer	ok	73

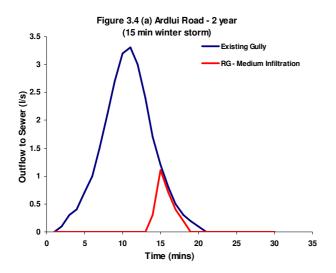
Figure 3.3 (a) Chatsworth Way - 100 year (15 min

Figure 3.3 (b) Chatsworth Way - 100 year (1440 min summer storm)

3.3 Ardlui Road

This section presents the results of modelling the Ardlui Road Rain Garden.

3.3.1 2 Year Critical Storm


Table 3.4 and Figures 3.4(a) and 3.4(b) present the results of modelling the Ardlui Road Rain Garden for the 2 year critical storm.

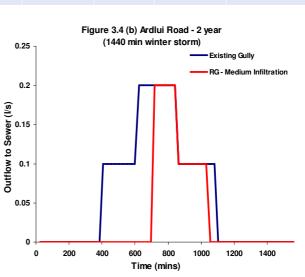

Table 3.4 indicates that maximum discharge to the sewer is limited to 1.0 l/s during the 2 year event Rain Garden scenarios. Figure 3.4 (a) indicates that no discharge to the sewer occurs until 14 minutes.

Table 3.4 indicates that during the maximum discharge volume 2 year event the Rain Garden scenario reduces the volume discharged to the sewer by a minimum of 34% (low infiltration scenario). During the medium to high infiltration Rain Garden scenario the discharge volume to the sewer is reduced by 54% and 100% respectively. Figure 3.4 (b) indicates how the Rain Garden attenuates runoff until its capacity is reached after 700 minutes.

TABLE 3.4: ARDLUI ROAD - 2 YEAR CRITICAL STORM

		Maximum	discharge rate	s	Maximum discharge volumes			
Rain Garden (RG) description	Max rate (I/s)	Critical storm duration (min)	Pipe Status	Discharge rate reduction (%)	Maximum discharge volume (m3)	Critical storm duration (min)	Pipe Status	Discharge volume reduction (%)
Existing gully	3.3	15 Winter	ok	NA	6.1	1440 Winter	ok	NA
RG - low infiltration (0.001 m/hr)	1.0	15 Winter	ok	70	4.0	1440 Winter	ok	34
RG - medium infiltration (0.01 m/hr)	1.0	15 Winter	ok	70	2.8	1440 Winter	ok	54
RG - high infiltration (0.1 m/hr)	1.0	15 Winter	ok	70	0	1440 Winter	ok	100

3.3.2 30 Year Critical Storm

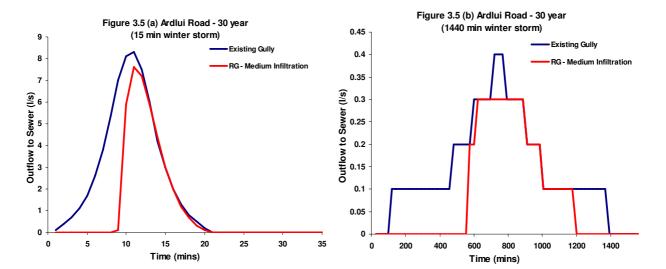

Table 3.5 and Figures 3.5(a) and 3.5(b) present the results of modelling the Ardlui Road Rain Garden for the 30 year critical storm.

Table 3.5 indicates that maximum discharge to the sewer is limited to 7.6 l/s during the 30 year event Rain Garden scenarios. Figure 3.5 (a) indicates that no discharge to the sewer occurs until 9 minutes.

Table 3.5 indicates that during the maximum discharge volume 30 year event the Rain Garden scenario reduces the volume discharged to the sewer by a minimum of 20% (low infiltration scenario). During the medium to high infiltration Rain Garden scenario the discharge volume to the sewer is reduced by 29% and 89% respectively. Figure 3.5 (b) indicates how the Rain Garden attenuates runoff until its capacity is reached after 570 minutes.

TABLE 3.5: ARDLUI ROAD - 30 YEAR CRITICAL STORM

		Maximum	discharge rate	s	Maximum discharge volumes			
Rain Garden (RG) description	Max rate (I/s)	Critical storm duration (min)	Pipe Status	Discharge rate reduction (%)	Maximum discharge volume (m ³)	Critical storm duration (min)	Pipe Status	Discharge volume reduction (%)
Existing gully	8.3	15 Winter	ok	NA	12.3	1440 Winter	ok	NA
RG - low infiltration (0.001 m/hr)	7.6	15 Winter	Flood	8	9.9	1440 Winter	ok	20
RG - medium infiltration (0.01 m/hr)	7.6	15 Winter	Flood	8	8.7	1440 Winter	ok	29
RG - high infiltration (0.1 m/hr)	7.6	15 Winter	Flood	8	1.4	1440 Winter	ok	89

3.3.3 100 Year Critical Storm

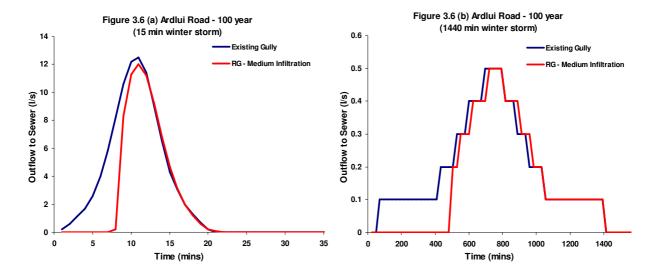

Table 3.6 and Figures 3.6(a) and 3.6(b) present the results of modelling the Ardlui Road Rain Garden for the 100 year critical storm.

Table 3.6 indicates that maximum discharge to the sewer is limited to 12 l/s during the 100 year event Rain Garden scenarios, providing a 4% reduction compared to baseline. Figure 3.6 (a) indicates that no discharge to the sewer occurs until 8 minutes.

Table 3.6 indicates that during the maximum discharge volume 100 year event the Rain Garden scenario reduces the volume discharged to the sewer by a minimum of 13% (low infiltration scenario). During the medium to high infiltration Rain Garden scenario the discharge volume to the sewer is reduced by 22% and 74% respectively. Figure 3.6 (b) indicates how the Rain Garden attenuates runoff until its capacity is reached after 504 minutes.

TABLE 3.6: ARDLUI ROAD - 100 YEAR CRITICAL STORM

		Maximum	discharge rate	s	Maximum discharge volumes			
Rain Garden (RG) description	Max rate (I/s)	Critical storm duration (min)	Pipe Status	Discharge rate reduction (%)	Maximum discharge volume (m ³)	Critical storm duration (min)	Pipe Status	Discharge volume reduction (%)
Existing gully	12.5	15 Winter	ok	NA	16.4	1440 Winter	ok	NA
RG - low infiltration (0.001 m/hr)	12	15 Winter	Flood	4	14.2	1440 Winter	ok	13
RG - medium infiltration (0.01 m/hr)	12	15 Winter	Flood	4	12.8	1440 Winter	ok	22
RG - high infiltration (0.1 m/hr)	12	15 Winter	Flood	4	4.2	1440 Winter	ok	74

4 **PREDICTOR TOOL**

This study considers the performance of selected 'best case' and 'worst case' Rain Gardens where the case is based upon slope gradient alone. In reality, a number of other factors are likely to influence the final positioning of Rain Gardens within the study area.

To provide an indication of how Rain Gardens would perform at various proposed locations within the study area a simple predictor tool has been developed using Microsoft Excel.

The predictor tool is based on Flood Estimation Handbook (FEH) (CD-ROM3) rainfall depth, duration and frequency data extracted for the locality and assesses the performance of Rain Gardens based on the following design criteria input parameters:

- Rain Garden catchment area (m²);
- Surface storage volume (m³);
- Cellular storage volume (m³);
- Average infiltration (I/hr).

For each set of Rain Garden input parameters conditional formatting has been used to turn rainfall depth cells green where no discharge to sewer occurs and pink where some discharge to sewer occurs. The predictor tool also provides the following information for each Rain Garden scenario:

- Volume of runoff (m³);
- Volume of infiltration during event (m³);
- Volume of discharge to sewer (m³);
- Drain down time after event (hrs).

Chatsworth Way Rain Garden model parameters (see Table 2.1) have been used to demonstrate how the predictor tool can be applied. The predictor tool screen dump shown in Appendix D indicates that where considering the 2 year event no discharge to the sewer occurs up to the 315 minute duration storm. Appendix D indicates that the 2 year 315 minute storm requires a drain down time of approximately 43 hours.

It is important to note that this predictor tool only provides an indication of the Rain Garden performance and should only be used within the defined study area (Figure 1.2), as rainfall depth, duration and frequency data varies spatially. The tool should be used as a precursor to detailed modelling, of the type undertaken in WinDes for this study.

The current version of the predictor tool assumes rapid transfer from open storage to cellular storage, however a future version of the tool could be further developed to allow users to specify this parameter.

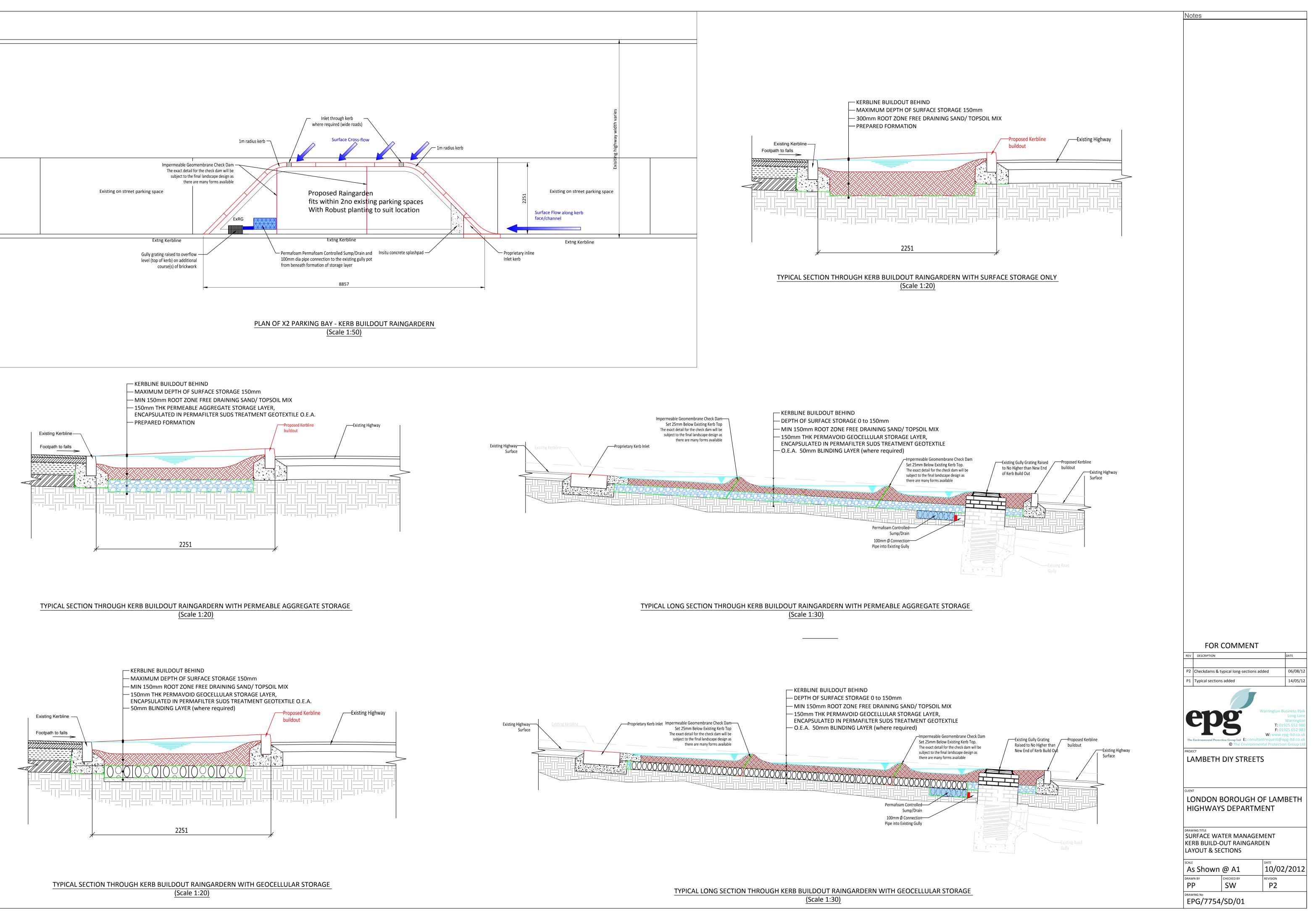
5 CONCLUSIONS

The conclusions of the Rain Garden modelling study are set out below:

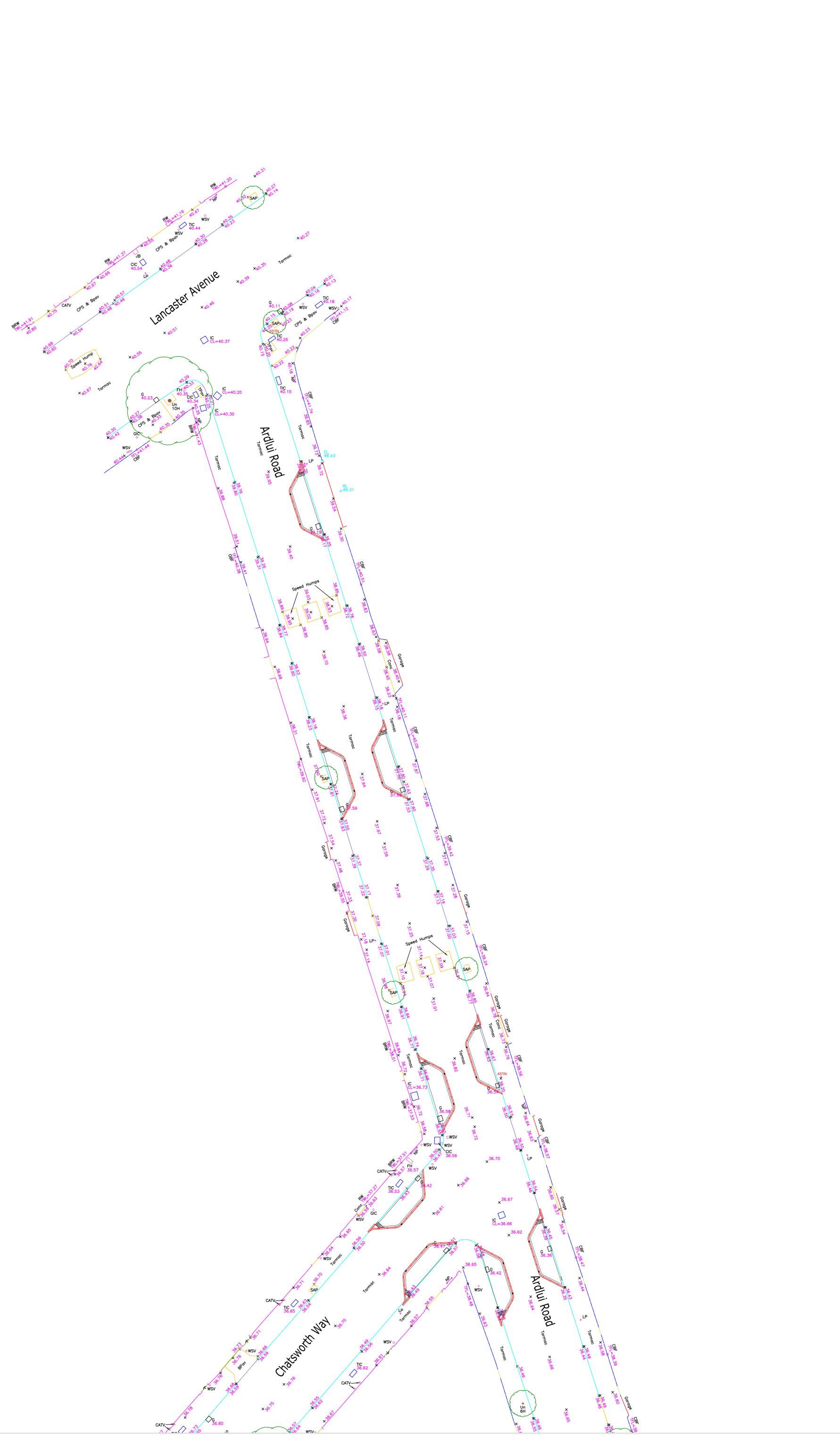
- During more frequent, less severe storms (i.e. 2 year event), both the Ardlui Road (worst case) and Chatsworth Way (best case) gradient Rain Garden locations are shown to provide significant benefits in terms of reducing maximum rates and discharge volumes to the sewer;
- The reduction in maximum discharge rate, post Rain Garden implementation, is less for the Ardlui Road Rain Garden. This is likely due to the larger catchment draining to the Ardlui Road Rain Garden;
- The percentage reduction in maximum discharge volume, post Rain Garden implementation, is less for the Ardlui Road Garden during the low and medium infiltration scenarios when compared to the Chatsworth Way Rain Garden, but similar during the high infiltration scenarios;
- When higher cellular storage infiltration rates are modelled, the maximum discharge volumes at both the 'worst case' and 'best case' Rain Garden locations reduce;
- During less frequent 30 year and 100 year events, the shorter duration, higher intensity storms, associated with the maximum outflow critical storm, exceed the capacity of the 'worst case' Rain Garden. However, the capacity of the 'best case' Rain Garden is not exceeded. Again this is likely due to the smaller catchment draining to the Chatsworth Way Rain Garden;
- During the longer duration 30 year and 100 year events, associated with the maximum discharge critical storm, the capacity of both the 'worst case' and 'best case' Rain Gardens the pipe status remains 'ok';
- In summary, all cases modelled provide a degree of attenuation and storage which, cumulatively, would act to reduce surcharging pressure on the local drainage network.

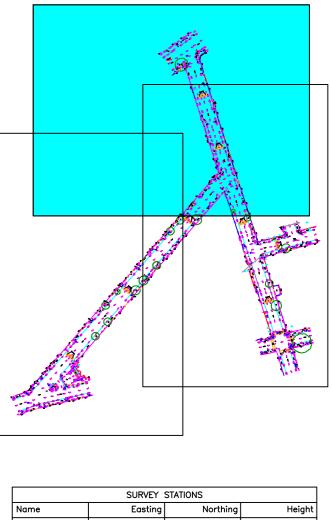
5.1 **Further Work**

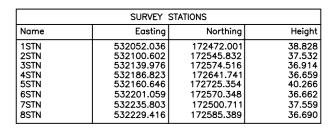
To further inform and improve the modelling study the following recommendations are made:

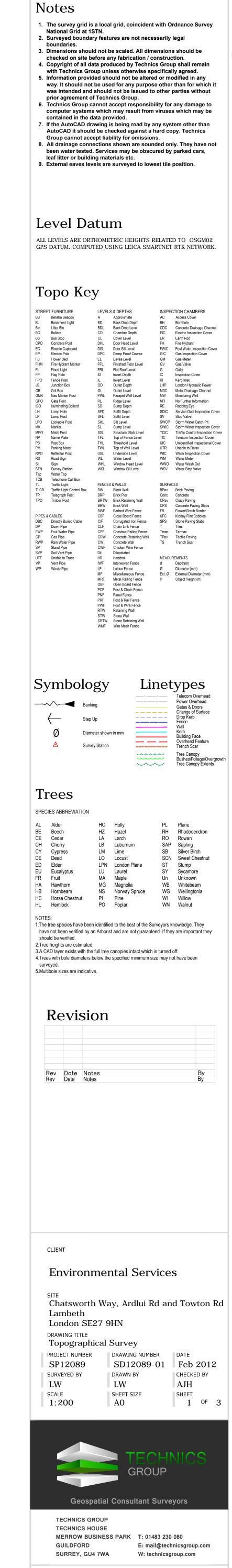

- Undertake WinDes modelling at further locations within the study area to assess the flood alleviation benefits of Rain Gardens within larger gully catchments;
- The interaction between a series of Rain Gardens (including the associated Thames Water sewer network) could be assessed using WinDes FloodFlow. FloodFlow includes the surface terrain allowing excess water exceeding the capacity of the Rain Garden (or bypasses the Rain Garden) to follow existing drainage pathways;
- The FloodFlow approach will allow the flooded volume to feed back into the system at a downstream point, rather than returning back into the system at the same point, as assumed in the current model. This would improve estimates of attenuation performance;
- To improve the understanding of existing flood risk and potentially provide further evidence for the requirement of Rain Gardens in the locality, a baseline model of the existing Thames Water sewer network could be built using WinDes (including FloodFlow). A review of the current Thames Water sewer network dataset held by URS has identified a number of missing pipe invert levels within the study area, this information would be required to inform the baseline model;

• Further development of the predictor tool to allow users to specify rate of transfer from open storage to cellular storage and to benchmark tool performance against model outputs such that in future the tool can be used with confidence to predict Rain Garden performance across larger areas, reducing the immediate need for modelling at the planning stage.


APPENDIX A – TYPICAL LAYOUT & SECTION

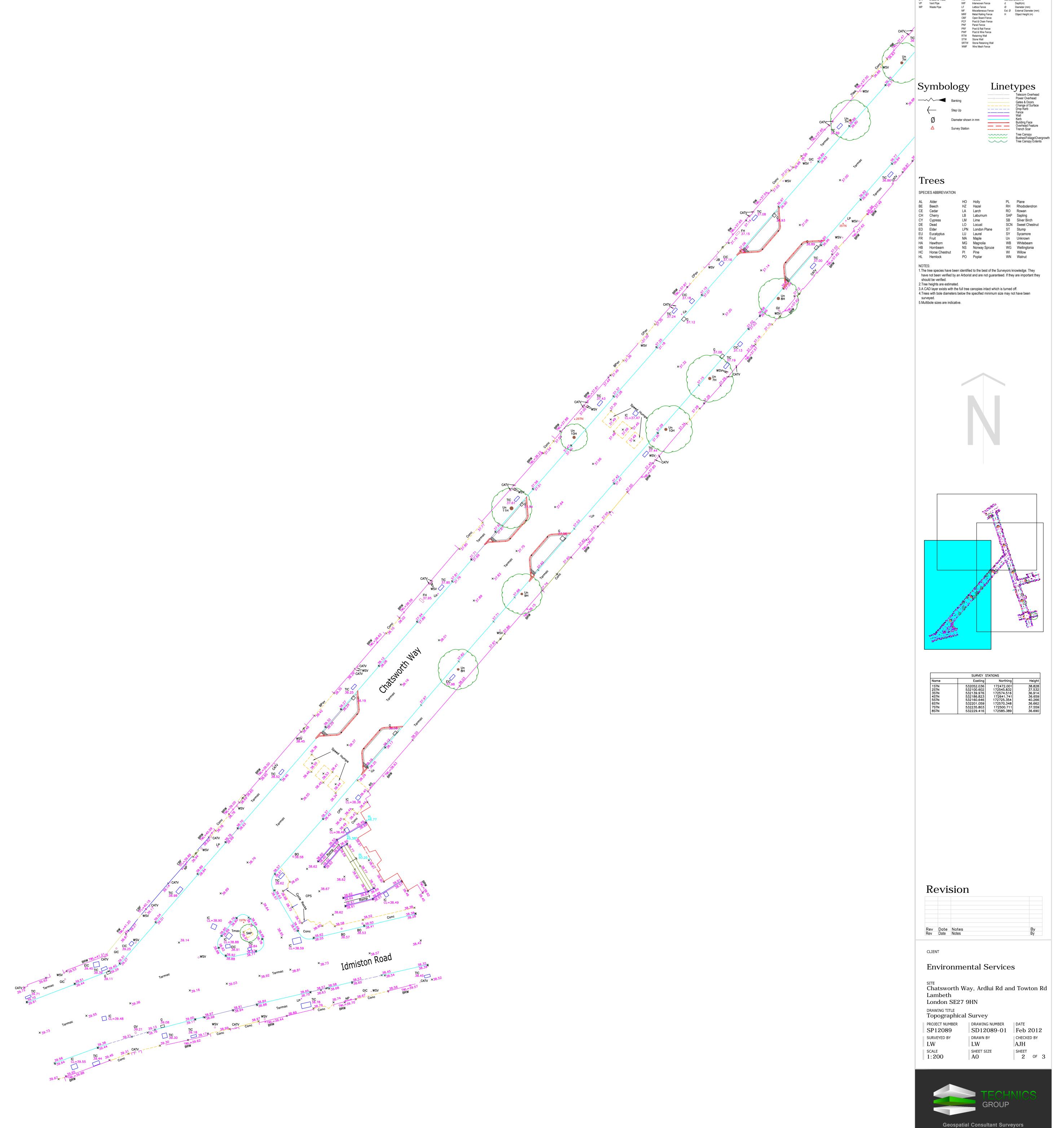



APPENDIX B – TOPOPGRAPHIC SURVEY



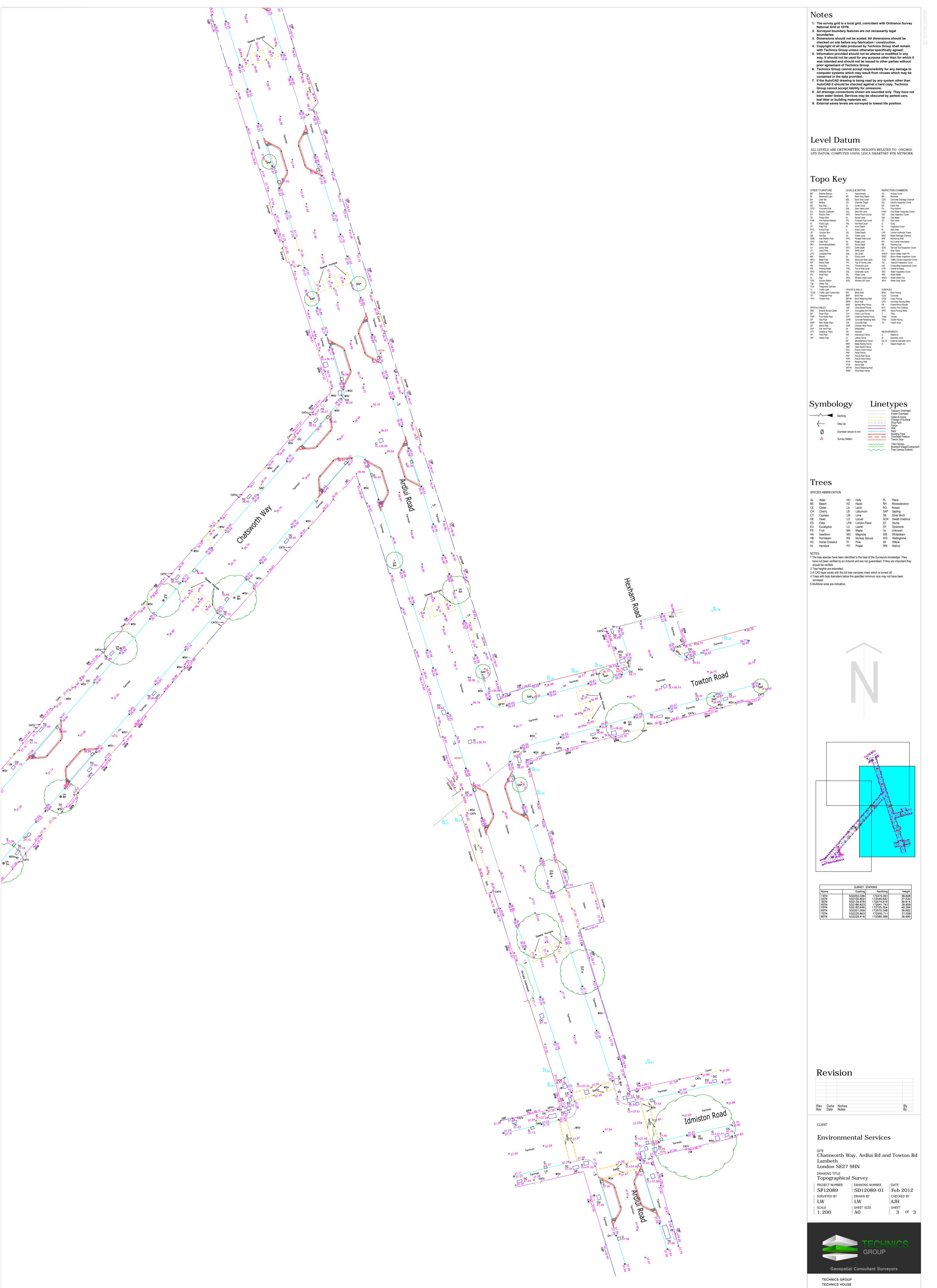
Regulated Spirit Control Contr

Notes


- The survey grid is a local grid, coincident with Ordnance Survey National Grid at 1STN.
 Surveyed boundary features are not necessarily legal boundaries
- Surveyed boundary reactives are not necessarily regarboundaries.
 Dimensions should not be scaled. All dimensions should be checked on site before any fabrication / construction.
- Copyright of all data produced by Technics Group shall remain with Technics Group unless otherwise specifically agreed.
 Information provided should not be altered or modified in any way. It should not be used for any purpose other than for which it was intended and should not be issued to other parties without price agreement of Technic Group.
- prior agreement of Technics Group.
 6. Technics Group cannot accept responsibility for any damage to computer systems which may result from viruses which may be computer systems which may result from viruses which may be contained in the data provided.
 7. If the AutoCAD drawing is being read by any system other than AutoCAD it should be checked against a hard copy. Technics
- Group cannot accept liability for omissions.
 All drainage connections shown are sounded only. They have not
- been water tested. Services may be obscured by parked cars, leaf litter or building materials etc.
 External eaves levels are surveyed to lowest tile position.

Level Datum

ALL LEVELS ARE ORTHOMETRIC HEIGHTS RELATED TO OSGM02 GPS DATUM, COMPUTED USING LEICA SMARTNET RTK NETWORK.


Торо Кеу

STREE	ET FURNITURE	LEVEL	S & DEPTHS	INSPE	CTION CHAMBERS
BB	Belisha Beacon	А	Approximate	AC	Access Cover
BL	Basement Light	BD	Back Drop Depth	BH	Borehole
Bin	Litter Bin	BDL	Back Drop Level	CDC	Concrete Drainage Channel
BO	Bollard	CD	Chamber Depth	EIC	Electric Inspection Cover
BS	Bus Stop	CL	Cover Level	ER	Earth Rod
CPO	Concrete Post	DHL	Door Head Level	FH	Fire Hydrant
EC	Electric Cupboard	DSL	Door Sill Level	FWIC	Foul Water Inspection Cover
EP	Electric Pole	DPC	Damp Proof Course	GIC	Gas Inspection Cover
FB	Flower Bed	EL	Eaves Level	GM	Gas Meter
FHM	Fire Hydrant Marker	FFL	Finished Floor Level	GV	Gas Valve
FL	Flood Light	FRL	Flat Roof Level	G	Gully
FP	Flag Pole	ID	Invert Depth	IC	Inspection Cover
FPO	Fence Post	IL	Invert Level	KI	Kerb Inlet
JB	Junction Box	OD	Outlet Depth	LHP	London Hydraulic Power
GB	Grit Box	OL	Outlet Level	MDC	Metal Drainage Channel
GMK	Gas Marker Post	PWL	Parapet Wall Level	MW	Monitoring Well
GPO	Gate Post	RL	Ridge Level	NFI	No Further Information
IBO	Illuminating Bollard	SD	Sump Depth	RE	Rodding Eye
LH	Lamp Hole	SFD	Soffit Depth	SDIC	Service Duct Inspection Cov
LP	Lamp Post	SFL	Soffit Level	SV	Stop Valve
LPO	Lockable Post	SiltL	Silt Level	SWCP	Storm Water Catch Pit
MK	Marker	SL	Sump Level	SWIC	Storm Water Inspection Cov
MPO	Metal Post	SSL	Structural Slab Level	TCIC	Traffic Control Inspection Co
NP	Name Plate	TFL	Top of Fence Level	TIC	Telecom Inspection Cover
PB	Post Box	THL	Threshold Level	UIC	Unidentified Inspectional Co
PM	Parking Meter	TWL	Top of Wall Level	UTR	Unable to Raise
RPO	Reflector Post	USL	Underside Level	WIC	Water Inspection Cover
RS	Road Sign	WL	Water Level	WM	Water Meter
SI	Sign	WHL	Window Head Level	WWO	Water Wash Out
STN	Survey Station	WSL	Window Sill Level	WSV	Water Stop Valve
Тар	Water Tap				
TCB	Telephone Call Box				
TL	Traffic Light		S & WALLS	SURFA	
TLCB	Traffic Light Control Box	BW	Block Wall	BPav	Brick Paving
TP	Telegraph Post	BRP	Brick Pier	Conc	Concrete
TPO	Timber Post	BRTW	Brick Retaining Wall	CPav	Crazy Paving
		BRW	Brick Wall	CPS	Concrete Paving Slabs
		BWF	Barbed Wire Fence	FB	Flower\Shrub Border
	& CABLES	CBF	Close Board Fence	KFC	Kidney Flint Cobbles
DBC	Directly Buried Cable	CIF	Corrugated Iron Fence	SPS	Stone Paving Slabs
DP	Down Pipe	CLF	Chain Link Fence	T	Tiles
FWP	Foul Water Pipe	CPF	Chestnut Pailing Fence	Tmac	Tarmac
GP	Gas Pipe	CRW	Concrete Retaining Wall	TPav	Tactile Paving
RWP	Rain Water Pipe	CW	Concrete Wall	TS	Trench Scar
SP	Stand Pipe	CWF	Chicken Wire Fence		
SVP	Soil Vent Pipe	Dil	Dilapidated	MEACU	DEMENTO
UTT	Unable to Trace	HR	Handrail	MEASU	REMENTS

TECHNICS GROUP TECHNICS HOUSE MERROW BUSINESS PARK T: 01483 230 080 GUILDFORD E: mail@technicsgroup.com

TECHNICS GROUP	
TECHNICS HOUSE	
MERROW BUSINESS PARK	T: 01483 230 080
GUILDFORD	E: mail@technicsgroup.com
SURREY, GU4 7WA	W: technicsgroup.com

APPENDIX C – WINDES OUTPUTS

URS Infrastru	cture & Envi	ronment UK I	Ltd	Page 0	
Scott House					
Alencon Link					
Basingstoke	RG21 7PP				
Date 15/10/20	12 09:41	Designed by	7 34299mc	DRAT	RECE.
File SW_high_	Infiltra	Checked by			
Micro Drainag	e	Network W.1	2.6		
	* - Indicates		I.Area T.E.	SW.txt side of System 1 k HYD DIA (mm) SECT (mm)	
		.2 1.306 19.0		0.600 o 300	
	1.000 24.81	.2 1.300 19.0	0.000 5.00	0.000 0 300	
		0 0.005 200.0 3 0.006 182.2		0.600 o 100 0.600 o 100	
	3.000 3.41	.3 0.200 17.1	0.013 5.00	0.600 o 150	
	4.000 2.04	6 0.300 6.8	0.001 5.00	0.600 o 150	
	* 2.002 2.80	2 0.150 18.7	0.002 0.00	0.600 o 150	
		4 0.005 240.8 9 0.006 249.8		0.600 o 100 0.600 o 100	
	6.000 1.83	0 0.150 12.2	0.000 5.00	0.600 o 150	
	* 2.003 1.00	0 0.060 16.7	0.002 0.00	0.600 o 150	
		0 0.005 200.0 0 0.006 166.7		0.600 o 100 0.600 o 100	
	2.004 3.56	7 4.985 0.7	0.000 0.00	0.600 o 150	
PN	US/MH US/CL Name (m)		DS/CL DS/IL	DS Ctrl C.Depth (m)	US/MH (mm)
1.000	1 40.370		39.400 33.904		1200
* 2.000	2 40 000	39.260 0.640	40.000 39.255	0.645	1
* 2.001	3 40.000		39.420 39.249		
3.000	2 39.600 3	39.449 0.001	39.420 39.249	0.021	1
4.000	3 39.700 3	39.549 0.001	39.420 39.249	0.021	1
* 2.002	4 39.420 3	39.249 0.021	39.270 39.099	0.021 Weir	1 x 2100
* 5.000			40.000 39.105		1
* 5.001	8 40.000		39.270 39.099		
6.000 * 2.003	5 39.400 3 6 39.270 3		39.270 39.099 39.190 39.039		1 1 x 2100
* 7.000 * 7.001			40.000 39.045 39.190 39.039		1 1
2.004	7 39.190 3	39.039 0.001	39.400 34.054	5.196 Weir	1 x 1000
	©	L982-2011 Mi	cro Drainage	Ltd	

URS Infrastruct	ure &	Envi	ronment	t UK Lt	-d		P	age 1			
Scott House							Ē				
Alencon Link								$\sum_{i=1}^{n}$		70	\sim
Basingstoke RG	321 7F	P							12		
Date 15/10/2012	2 09:4	1	Design	ed by	34299	mc			E.	The:	CC
File SW_high_Ir	nfiltr	a	Checke	d by							$-\infty$
Micro Drainage			Networ	k W.12	.6						
		Erriat	ing No	trouls	Dotoi	la for	CH	++			
		EXISU	ing Ne	LWOLK	Detai	IS IOI	50.	LXL			
	PN	Length	Fall	Slope I	.Area	T.E.	k	HYD	DIA		
		(m)	(m)	(1:X)	(ha)	(mins)	(mm) SECT	(mm)		
	1.001	32.322	1.701	19.0	0.000	0.00	0.60	0 0	300		
	8.000	4.219	5.088	0.8	0.000	5.00	0.60	0 0	150		
	9.000	3.806	5.085	0.7	0.000	5.00	0.60	0 0	150		
	1.002	34.883	1.836	19.0	0.000	0.00	0.60	0 0	300		
PN			US/IL		DS/C			DS		US/MH	
	Name	(m)	(m)	C.Dept	h (m)) (m	i) C	.Depth		(mm)	
				(m)				(m)			
1.001	8	39.400	33.904	5.19	6 37.6	73 32.2	203	5.170		1	
8.000	٥	27 502	37.441	0 00	1 27 6	73 32.3	252	5.170		1	
										T	
9.000	10	37.589	37.438	0.00	1 37.6	73 32.3	353	5.170		1	
1.002	11	37.673	32.203	5.17	0 36.7	14 30.3	367	6.047		1	

©1982-2011 Micro Drainage Ltd

URS Infrastructure & Envi	ronment UK Ltd	Page 2
Scott House		
Alencon Link		
Basingstoke RG21 7PP		THERE
Date 15/10/2012 09:41	Designed by 34299mc	PRIDECE
File SW_high_Infiltra	Checked by	
Micro Drainage	Network W.12.6	

Online Controls for SW.txt

Orifice Manhole: 3, DS/PN: 2.001, Volume (m³): 0.0

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 39.255

Weir Manhole: 4, DS/PN: 2.002, Volume (m³): 0.1

Discharge Coef 0.544 Width (m) 2.100 Invert Level (m) 39.395

Orifice Manhole: 8, DS/PN: 5.001, Volume (m³): 0.0

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 39.105

Weir Manhole: 6, DS/PN: 2.003, Volume (m³): 0.1

Discharge Coef 0.544 Width (m) 2.100 Invert Level (m) 39.245

Orifice Manhole: 12, DS/PN: 7.001, Volume (m³): 0.0

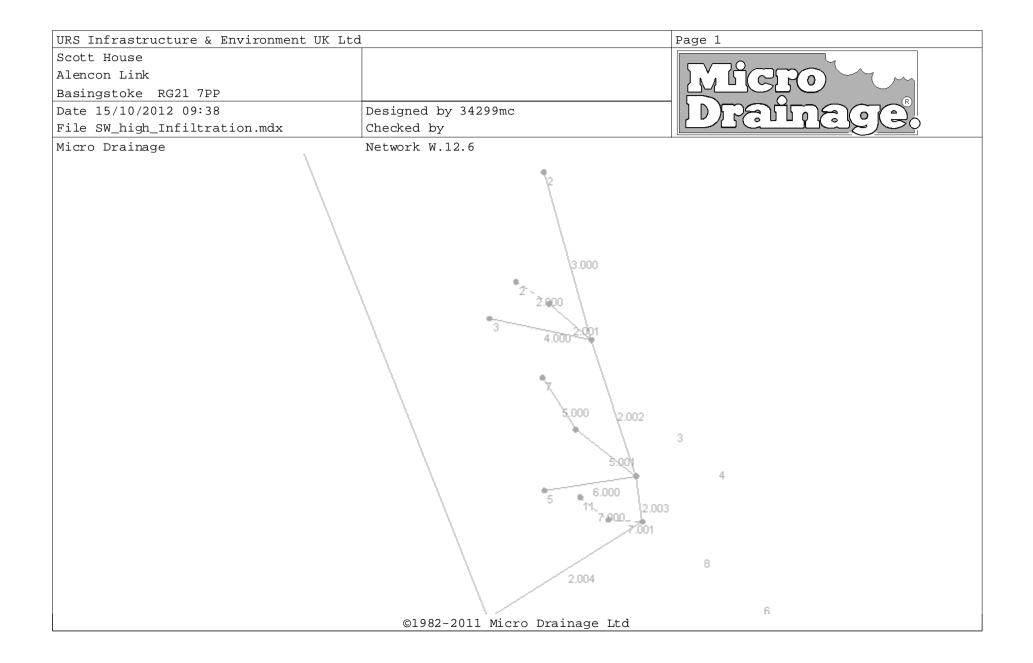
Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 39.045

Weir Manhole: 7, DS/PN: 2.004, Volume (m³): 0.0

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 39.150

ond initiaberaceare a hivi	lronment UK Ltd	Page 3
Scott House		
Alencon Link		
Basingstoke RG21 7PP		
Date 15/10/2012 09:41	Designed by 34299mc	LPATRACE.
File SW_high_Infiltra	Checked by	
Micro Drainage	Network W.12.6	
_	torage Structures for SW. r Storage Manhole: 3, DS/	
	Invert Level (m) 38.955	Safety Factor 2.0
	fficient Base (m/hr) 0.10000	
Infiltration Coe	efficient Side (m/hr) 0.10000	
Depth (m) Area (m²)	Inf. Area (m ²) Depth (m) Are	a (m²) Inf. Area (m²)
0.000 4.1	4.1 0.151	0.0 5.3
0.150 4.1		
	·	
Tank o	or Pond Manhole: 4, DS/PN	: 2.002
	Invert Level (m) 39.249	
Depth (m) Area	(m ²) Depth (m) Area (m ²) Dep	th (m) Area (m²)
0.000	0.0 0.100 3.3	0.150 4.1
Cellular	r Storage Manhole: 8, DS/	<u>PN: 5.001</u>
	Invert Level (m) 38.800	-
	fficient Base (m/hr) 0.10000 fficient Side (m/hr) 0.10000	Porosity 0.95
Infiltration Coe		-
Infiltration Coe Depth (m) Area (m²) 0.000 5.7	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151	-
Infiltration Coe Depth (m) Area (m ²)	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151	a (m²) Inf. Area (m²)
Infiltration Coe Depth (m) Area (m²) 0.000 5.7 0.150 5.7	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151	a (m²) Inf. Area (m²) 0.0 7.1
Infiltration Coe Depth (m) Area (m²) 0.000 5.7 0.150 5.7	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151 7.1	a (m²) Inf. Area (m²) 0.0 7.1
Infiltration Coe Depth (m) Area (m²) 0.000 5.7 0.150 5.7 <u>Tank c</u>	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151 7.1 0.151 Or Pond Manhole: 6, DS/PN Invert Level (m) 39.099	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003
Infiltration Coe Depth (m) Area (m ²) 0.000 5.7 0.150 5.7 <u>Tank (</u> Depth (m) Area (m ²) Dept	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151 or Pond Manhole: 6, DS/PN Invert Level (m) 39.099 h (m) Area (m ²) Depth (m) Are	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003 a (m ²) Depth (m) Area (m ²)
Infiltration Coe Depth (m) Area (m ²) 0.000 5.7 0.150 5.7 <u>Tank o</u> Depth (m) Area (m ²) Deptl 0.000 0.0	efficient Side (m/hr) 0.10000 Inf. Area (m²) Depth (m) Are 5.7 0.151 7.1 0.151 or Pond Manhole: 6, DS/PN Invert Level (m) 39.099 h (m) Area (m²) Depth (m) Are 0.050 1.9 0.100	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003 a (m ²) Depth (m) Area (m ²) 3.8 0.150 5.7
Infiltration Coe Depth (m) Area (m ²) 0.000 5.7 0.150 5.7 <u>Tank o</u> Depth (m) Area (m ²) Deptl 0.000 0.0	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151 or Pond Manhole: 6, DS/PN Invert Level (m) 39.099 h (m) Area (m ²) Depth (m) Are	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003 a (m ²) Depth (m) Area (m ²) 3.8 0.150 5.7
Infiltration Coe Depth (m) Area (m ²) 0.000 5.7 0.150 5.7 <u>Tank (</u> Depth (m) Area (m ²) Deptl 0.000 0.0 0.0	efficient Side (m/hr) 0.10000 Inf. Area (m²) Depth (m) Are 5.7 0.151 7.1 0.151 or Pond Manhole: 6, DS/PN Invert Level (m) 39.099 h (m) Area (m²) Depth (m) Are 0.050 1.9 0.100	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003 a (m ²) Depth (m) Area (m ²) 3.8 0.150 5.7 PN: 7.001
Infiltration Coe Depth (m) Area (m²) 0.000 5.7 0.150 5.7 Tank (m) Depth (m) Area (m²) Depth 0.000 0.0 Cellular Infiltration Coe Infiltration Coe	ifficient Side (m/hr) 0.10000 Inf. Area (m²) Depth (m) Are 5.7 0.151 7.1 0.151 or Pond Manhole: 6, DS/PN Invert Level (m) 39.099 h (m) Area (m²) Depth (m) Are 0.050 1.9 0.100 Storage Manhole: 12, DS/ Invert Level (m) 38.745 strictent Base (m/hr) 0.10000	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003 a (m ²) Depth (m) Area (m ²) 3.8 0.150 5.7 PN: 7.001 Safety Factor 2.0 Porosity 0.95
Infiltration Coe Depth (m) Area (m²) 0.000 5.7 0.150 5.7 Tank (m) Depth (m) Area (m²) Depth 0.000 0.0 Cellular Infiltration Coe Infiltration Coe	fficient Side (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 5.7 0.151 7.1 0.151 Or Pond Manhole: 6, DS/PN Invert Level (m) 39.099 h (m) Area (m ²) Depth (m) Are 0.050 1.9 0.100 Storage Manhole: 12, DS/ Invert Level (m) 38.745 S fficient Base (m/hr) 0.10000 Inf. Area (m ²) Depth (m) Are 1.5 0.151	a (m ²) Inf. Area (m ²) 0.0 7.1 : 2.003 a (m ²) Depth (m) Area (m ²) 3.8 0.150 5.7 PN: 7.001 Safety Factor 2.0 Porosity 0.95

©1982-2011 Micro Drainage Ltd


URS Infrastructure & Envi	ronment UK Ltd	Page 4
Scott House		
Alencon Link		
Basingstoke RG21 7PP		Therefore a
Date 15/10/2012 09:41	Designed by 34299mc	PRIMACE
File SW_high_Infiltra	Checked by	
Micro Drainage	Network W.12.6	

Tank or Pond Manhole: 7, DS/PN: 2.004

Invert Level (m) 39.039

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 0.0 0.150 1.5

Scott House Alencon Link Basingstoke RG21 7PP Date 08/03/2013 09:35 File SW F_Med Infilt [checked by Micro Drainage Network W.12.6 Existing Network Details for Storm * - Indicates pipe has been modified outside of System 1 PN Eargh Fall Stope I.Area T.E. k HYO DIA (m) (n) (1:X) (A.A.) (m) (m) SECT (m) S1.000 16.566 0.240 69.0 0.000 5.00 0.600 0 300 S2.000 4.168 0.100 41.7 0.000 5.00 0.600 0 150 S1.001 19.775 0.160 123.6 0.000 5.00 0.600 0 150 S4.001 7.144 0.100 71.4 0.009 5.00 0.600 0 150 S4.001 3.753 4.840 0.88 0.000 5.00 0.600 0 150 S4.001 3.753 4.840 0.88 0.000 5.00 0.600 0 150 S4.001 3.753 4.840 0.88 0.000 5.00 0.600 0 150 S1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 150 S1.000 1 37.470 32.470 4.700 37.220 32.230 4.690 150 S1.000 1 37.203 2.222 4.850 37.220 32.230 4.690 120 S1.001 1 37.203 2.222 4.850 37.220 32.230 4.690 120 S2.000 2 37.220 32.220 4.850 37.220 32.020 4.950 1 S1.001 1 37.203 32.700 0.070 37.203 32.000 4.950 1170 1 S3.000 5 37.220 37.203 32.020 4.950 1.71 1 S4.000 5 37.220 37.203 0.000 0.720 32.080 4.950 1 S1.001 2 37.220 32.220 4.850 37.220 32.020 4.950 1 S1.001 3 37.203 32.02 4.000 37.920 32.080 4.950 1 S1.001 3 37.203 32.02 4.000 37.920 32.080 4.950 1 S1.001 3 37.203 32.020 0.070 37.202 36.900 0.170 1 S4.001 5 37.220 36.900 0.170 1 S4.001 5 37.220 36.900 0.721 32.036.900 0.220 orifice 1 S4.001 5 37.220 36.900 0.722 36.900 0.170 1 S4.001 5 37.220 36.900 0.170 37.60 32.060 4.855 Netri 1 × 1000 S7.000 13 36.920 36.770 0.000 37.60	URS Infrastructure &	Envi	conment	UK L	td		Page	1		
Basingstoke RG21 PP Date of/03/2013 OB Designed by 34299mc Micro Drainage Network W.12.6 Date of/03/2013 09:35 Micro Drainage Network W.12.6 Date of/03/2013 09:35 Metwork W.12.6 Date of/03/2013 09:35 Metwork W.12.6 Called of 0.000 State of 0.000 Metwork Datails For Store Network Datails for Store 1 Fall \$100 6.000 Store 0.000 Store 0.000 Store 0.000 Acce 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 Store 0.000 <td col<="" td=""><td>Scott House</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>Scott House</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Scott House								
Date 08/03/2013 09:35 File SW_F Med Infiltr Micro Drainage Designed by 34299mc Checked by Network W.12.6 Detected by Network W.12.6 Existing Network Details for Storm * - Indicates pipe has been modified outside of System 1 PN Length Fall Stope T.Acea T.E. k HOD DIA (m) (m) (1:X) (ha) (m) SECT (mn) S1.000 16.566 0.240 69.0 0.000 5.00 0.600 o 300 S2.000 4.168 0.100 41.7 0.000 5.00 0.600 o 150 S3.000 4.041 0.140 28.9 0.000 5.00 0.600 o 150 S4.000 7.144 0.100 71.4 0.009 5.00 0.600 o 150 \$\$5.000 5.432 0.180 30.2 0.004 5.00 0.600 o 150 \$\$6.000 1.746 0.055 349.2 0.000 5.00 0.600 o 150 \$\$5.000 4.019 4.710 0.9 0.000 5.00 0.600 o 150 \$\$1.002 36.721 0.300 122.4 0.000 0.00 0.600 o 150 \$\$1.002 3.798 4.690 0.8 0.000 5.00 0.600 o 150 \$\$1.000 1 37.470 32.470 4.700 37.220 32.230 4.690 1 150 \$\$1.000 1 37.203 32.220 4.850 37.220 32.200 4.990 1 1 \$\$1.001 2 37.220 32.220 4.850 37.220 32.000 0.170 1 1 \$\$1.001 2 37.220 36.901 0.070 37.220 36.900 0.170 1 1 \$\$1.000 5 37.220 37.000 0.070 37.220	Alencon Link						\int	78/	~	
Pile SW_F_Med_Infiltr Checked by Concernent with the set of t	Basingstoke RG21 7P	P							ro un	
Pile SW_F_Med_Infiltr Checked by Micro Drainage Network W.12.6 Existing Network Details for Storm - Indicates pipe has been modified outside of System 1 PN Length Fall Slop T.Areo T.Areo T.A. M. MTD DIA (m) SECT (m) S1.000 16.566 0.240 69.0 0.000 5.00 0.600 0 300 S1.000 16.566 0.240 69.0 0.000 5.00 0.600 0 150 S1.000 16.566 0.240 69.0 0.000 5.00 0.600 0 150 S1.000 16.566 0.240 69.0 0.000 5.00 0.600 0 150 \$1.000 16.566 0.240 0.910 0.010 5.00 0.600 0 150 \$1.000 119.775 0.160 123.6 0.000 0.000 0.600 0 150 \$1.001 19.775 0.160 123.6 0.000 0.000 0.600 0 150 \$4.000 7.144 0.100 71.4 0.009 5.00 0.600 0 100 \$6.000 1.746 0.005 349.2 0.000 5.00 0.600 0 150 \$5.000 1.746 0.005 349.2 0.000 5.00 0.600 0 150 \$5.000 1.738 4.600 0.8 0.000 5.00 0.600 0 150 \$5.000 1.738 4.600 0.8 0.000 5.00 0.600 0 150 \$5.000 1.378 4.600 0.738 4.600 0.00 0.000 0.000 0.600 0 150 \$5.000 1.378 4.600 0.78 0.78 0.70 0.000 0.000 0.000 0.000 0.000 \$5.000 1.378 4.600 0.78 0.798 4.690 0.000 \$5.000 1.378 4.600 0.798 4.790 0.000 0.000 0.000 0.000 0.000 0.000 \$5.000 1.3798 4.690 0.000 0.000 0.000 0.000 0.000 0.0000 \$5.000 1.3770 3.2470 4.700	Date 08/03/2013 09:3	5	Design	ed by	34299r	nc	─ } D`) Dest	merce	
Micro Drainage Network W.12.6 Existing Network Details for Storm * - Indicates pipe has been modified outside of System 1 PN Length Fall Slope I.Area T.E. k HYD DIA (m) (m) (1:X) (m) (m) SECT (mm) SILONO 16.566 0.240 69.0 0.000 5.00 0.600 0 150 SILONO 16.566 0.240 69.0 0.000 5.00 0.600 0 150 S2.000 4.168 0.100 41.7 0.000 5.00 0.600 0 150 S3.000 4.041 0.140 28.9 0.000 5.00 0.600 0 150 S1.001 19.775 0.160 123.6 0.000 0.00 0.600 0 150 * S5.000 5.432 0.180 30.2 0.004 5.00 0.600 0 150 * S5.000 1.746 0.005 349.2 0.000 5.00 0.600 0 150 * S5.000 1.746 0.005 349.2 0.000 5.00 0.600 0 150 * S1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 150 * S1.002 36.721 0.301 122.4 0.000 0.00 0.600 0 150 * S1.000 1 37.70 32.470 4.700 37.220 32.230 4.690 1200 S2.000 2 37.220 32.220 4.650 37.220 32.230 4.690 1200 S2.000 2 37.220 32.220 4.650 37.220 32.000 0.170 1 \$3.000 3 37.220 32.220 4.650 37.220 32.000 0.170 1 \$3.000 5 37.220 37.000 0.070 37.220 36.900 0.170 1 \$4.500 5 37.220 37.000 0.070 37.220 36.900 0.170 1 \$4.000 5 37.220 37.000 0.070 37.220 36.900 0.170 1 \$5.000 6 37.320 37.000 0.070 37.220 36.900 0.170 1 \$5.000 6 37.320 37.000 0.070 37.220 36.900 0.170 1 </td <td>File SW F Med Infilt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	File SW F Med Infilt									
Existing Network Details for Storm * - Indicates pipe has been modified outside of System 1 PN Length (m) Fall (n) Stope (1) I.Area (mass) T.E. (mass) K HYD DIA (mass) 51.000 16.566 0.240 69.0 0.000 5.00 0.600 0 300 52.000 4.168 0.100 41.7 0.000 5.00 0.600 0 150 53.000 4.041 0.140 28.9 0.000 5.00 0.600 0 150 \$5.000 5.432 0.160 123.6 0.000 5.00 0.600 150 \$5.000 5.432 0.180 30.2 0.004 5.00 0.600 150 \$5.000 1.746 0.005 349.2 0.000 5.00 0.600 150 \$5.001 1.746 0.005 349.2 0.000 5.00 6.000 150 \$5.001 3.753 4.840 0.8 0.000 5.00 6.00 310					2.6					
PN Length Fall Slope L.A.Fea T.E. k HTD DTA S1.000 16.566 0.240 69.0 0.000 5.00 0.600 0 300 S2.000 4.168 0.100 11.7 0.000 5.00 0.600 0 150 S3.000 4.041 0.140 28.9 0.000 5.00 0.600 0 150 S1.000 7.144 0.100 71.4 0.009 5.00 0.600 0 150 \$4.000 7.144 0.100 71.4 0.009 5.00 0.600 0 150 \$5.000 5.432 0.180 30.2 0.004 5.00 0.600 0 100 \$4.001 3.753 4.840 0.8 0.000 5.00 0.600 0 150 * \$1.002 36.721 0.300 122.4 0.000 5.00 0.600 0 150 \$1.001 1 37.470 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>ls for</td> <td>Storm</td> <td></td> <td></td>						ls for	Storm			
(m) (1. N) (m) (min) (min) (min) SEC (min) 51.000 16.566 0.200 60.00 5.00 0.600 0 300 52.000 4.168 0.100 41.7 0.000 5.00 0.600 0 150 53.000 4.041 0.140 28.9 0.000 5.00 0.600 0 300 54.000 7.144 0.100 71.4 0.000 5.00 0.600 0 150 56.001 1.746 0.005 3432 0.000 5.00 0.600 0 100 54.001 3.753 4.800 0.80 0.000 5.00 0.600 0 150 58.001 3.793 4.69 0.80 5.00 0.600 0 150 58.000 3.798 4.69 0.80 5.00 0.600 0 100 58.000 3.798 4.69 0.00 5.00 0.600 1300	* - Ind	icates	pipe ha	is been	modifi	ed outs:	ide of S	System 1		
S2.000 4.168 0.100 41.7 0.000 5.00 0.600 0 150 S3.000 4.041 0.140 28.9 0.000 5.00 0.600 0 150 S1.001 19.775 0.160 123.6 0.000 5.00 0.600 0 300 S4.000 7.144 0.100 71.4 0.000 5.00 0.600 0 150 * S5.000 5.432 0.180 30.2 0.000 5.00 0.600 0 100 S6.001 1.746 0.005 349.2 0.000 5.00 0.600 0 100 S4.001 3.753 4.840 0.8 0.000 5.00 0.600 0 100 * S1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 150 * S1.002 36.721 0.300 122.4 0.000 5.00 0.600 0 150 * S1.002 37.220 32.470 4.709 0.55 0.600 0.600 150 * S1.	PN	-		-						
S3.000 4.041 0.140 28.9 0.000 5.00 0.600 0 150 S1.001 19.775 0.160 123.6 0.000 0.600 0 0.000 0.600 0 150 \$4.000 7.144 0.100 71.40 0.009 5.00 0.600 0 150 * \$5.000 5.432 0.180 30.2 0.004 5.00 0.600 0 150 * \$5.000 1.746 0.005 349.2 0.000 5.00 0.600 0 100 \$6.001 2.511 0.006 418.5 0.000 5.00 0.600 0 150 * \$7.000 4.019 4.710 0.9 0.000 5.00 0.600 0 150 * \$1.002 3.753 4.840 0.8 0.000 5.00 0.600 0 150 \$5.000 3.798 4.690 0.8 0.000 5.00 0.600 0 150 \$5.000 13 37.220 32.20 4.850	S1.000	16.56	6 0.240	69.0	0.000	5.00	0.600	o 300		
S1.001 19.775 0.160 123.6 0.000 0.600 0 150 S4.000 7.144 0.100 71.4 0.000 5.00 0.600 0 150 * S5.000 5.432 0.180 30.2 0.000 5.00 0.600 0 150 \$5.000 1.746 0.005 349.2 0.000 5.00 0.600 0 100 \$6.001 1.746 0.005 349.2 0.000 5.00 0.600 0 150 \$5.001 1.753 4.840 0.8 0.000 5.00 0.600 0 150 \$5.000 3.753 4.840 0.8 0.000 5.00 0.600 0 150 \$5.000 3.752 4.840 0.8 0.000 5.00 0.600 0 150 \$5.000 1 37.44 0.300 12.40 0.000 5.00 0.600 5 150 \$5.000 1 37.420 32.470 4.700 37.220 32.120 4.690 1200 <	s2.000	4.16	8 0.100	41.7	0.000	5.00	0.600	o 150		
S4.000 7.144 0.100 71.4 0.009 5.00 0.600 0 150 * S5.000 5.432 0.180 30.2 0.004 5.00 0.600 0 150 S6.000 1.746 0.005 349.2 0.000 5.00 0.600 0 100 S4.001 3.753 4.840 0.8 0.000 5.00 0.600 0 150 * S7.000 4.019 4.710 0.9 0.000 5.00 0.600 0 150 * S1.002 36.721 0.300 122.4 0.000 5.00 0.600 0 300 * S1.002 37.798 4.690 0.500 0.600 0 500 0.500 0.600 150 * S1.000 1 37.470 32.470 4.700 37.220 32.230 4.690 1200 S1.001 1 37.220 32.220 4.850 37.220 32.100 4.190 1 S1.001 2 37.220 32.220 4.850 37.220 32.060 4.170	\$3.000	4.04	1 0.140	28.9	0.000	5.00	0.600	o 150		
* \$5.000 5.432 0.180 30.2 0.004 5.00 0.600 o 150 \$6.000 1.746 0.005 349.2 0.000 5.00 0.600 o 100 \$6.001 2.511 0.006 418.5 0.000 5.00 0.600 o 150 * \$7.000 4.019 4.710 0.9 0.000 5.00 0.600 o 150 * \$7.000 3.798 4.690 0.9 0.000 5.00 0.600 o 300 * \$7.80.000 3.798 4.690 0.9 0.000 5.00 0.600 o 300 * \$7.80.000 3.798 4.690 0.8 0.000 5.00 0.600 o 150 * \$7.000 3.798 4.690 0.9 0.000 5.00 0.600 o 100 S.000 0.600 o 100 * \$7.000 3.798 4.690 0.7 0.000 0.000 0.000 0.600 0 0 100 S.000 0.600 o 100 * \$7.80.000 3.798 4.690 0.9 0.000 0.000 0.600 0 0 100 S.000 0.600 0 100 * \$7.80.000 3.798 4.690 0.700 0.700 0.000 0.000 0.000 0.600 0 0 100 S.000 0.600 0 1 0.000 0.0	S1.001	19.77	5 0.160	123.6	0.000	0.00	0.600	o 300		
S6.000 1.746 0.005 349.2 0.000 5.00 0.600 0 100 S4.001 3.753 4.840 0.8 0.000 5.00 0.600 0 150 * S7.000 4.019 4.710 0.9 0.000 5.00 0.600 0 150 * S1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 300 * S1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 300 * S1.002 36.721 US/MI US/CL US/MI US/CL (mm) 0.000 50.00 0.600 0 300 \$1.000 1 37.470 32.470 4.700 37.220 32.230 4.690 1200 \$2.000 2 37.220 32.220 4.850 37.220 32.120 4.950 1 \$3.000 3 37.220 32.220 4.850 37.220 32.080 4.990 1 \$4.000 5 37.220 37.200 0.070 37.220										
S6.001 2.511 0.006 418.5 0.000 0.000 0.600 0 100 S4.001 3.753 4.840 0.8 0.000 5.00 0.600 0 150 * \$7.000 4.019 4.710 0.9 0.000 5.00 0.600 0 300 * \$1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 300 * \$1.002 36.721 US/MI US/MI US/MI US/MI US/MI US/MI (mm) 0.000 5.00 0.600 0 150 PN US/MI US/MI US/MI US/MI US/MI US/MI (mm) 0.000 5.00 0.600 0 100 \$1.000 1 37.470 32.470 4.700 37.220 32.120 4.950 11 \$3.000 3 37.220 32.220 4.850 37.220 32.060 4.990 1 \$1.001 2 37.220 32.020 4.700 37.060 32.060 4.700										
* \$7.000 4.019 4.710 0.9 0.000 5.00 0.600 0 150 * \$1.002 36.721 0.300 122.4 0.000 0.000 0.600 0 300 PN US/MH US/LI US/II US DS DS/LI DS/II DS C.Pepth (m) 0.000 0.000 0.600 0 150 S1.000 1 37.470 32.470 4.700 37.220 32.230 4.690 1200 \$2.000 2 37.220 32.220 4.850 37.220 32.120 4.950 1 \$3.000 3 37.220 32.220 4.850 37.220 32.060 4.700 1 \$3.000 3 37.220 32.220 4.850 37.220 32.060 4.700 1 \$4.001 5 37.220 32.220 4.850 37.220 32.060 4.700 1 \$4.001 5 37.220 37.200 0.070 37.220 36.900 0.170 1 \$6.001 8 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
* \$1.002 36.721 0.300 122.4 0.000 0.00 0.600 0 300 PN \$38.000 3.798 4.690 US/MH US/CL US/IL Name 0.8 (m) 0.000 US/MH US/CL (m) 0.00 US/MH US/CL (m) 0.000 US/MH US/MH (m) 0.00/MH US/MH (m) 0.00/M US/MH (m) 0.00/M US/M (m) 0.00/M US/M (m) 0.00/M US/M (m) 0.00/M US/M (m) 0.00/M US/M (m) 0.00/M US/M (m) 0.00/M US/M (m) 0.00/M US/M (m) 0	S4.001	3.75	3 4.840	0.8	0.000	5.00	0.600	o 150		
N * 58.00 3.798 4.690 (m) 0.8 (m) 0.100 0.1	* S7.000	4.01	9 4.710	0.9	0.000	5.00	0.600	o 150		
PNUS/MH NameUS/CL (m)US/TL (m)US C.pepth (m)DS/LL (m)DS/LL (m)DS C.pepth (m)Ctrl US/MH (mm)S1.000137.47032.4704.70037.22032.2304.6901200S2.000237.22032.2204.85037.22032.0804.9501200S3.000337.22032.2204.85037.22032.0804.99010S1.001237.22032.0204.70037.02032.0004.70010S4.000537.22037.0000.07037.22036.9000.17011S6.000737.22036.9010.20137.22036.9000.2140.11 1S4.001537.22036.9000.17037.20036.9000.2140.11 1 x 1000*S7.0001336.92036.70037.00037.00032.0004.850Meir 1 x 1000*S1.002337.00032.0004.70031.7004.7001	* S1.002	36.72	1 0.300			0.00	0.600	o 300		
S2.000 2 37.220 32.220 4.850 37.220 32.120 4.950 1 S3.000 3 37.220 32.220 4.850 37.220 32.080 4.990 1 S1.001 2 37.220 32.220 4.700 37.060 32.060 4.700 1 S4.000 5 37.220 32.220 4.700 37.020 36.900 0.170 1 * S5.000 6 37.320 37.080 0.090 37.220 36.900 0.170 1 * S5.000 6 37.220 36.901 0.209 37.220 36.900 0.170 1 \$6.000 7 37.220 36.906 0.214 37.220 36.900 0.214 1 \$6.001 8 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 31.760 4.700 1<	PN US/MH U	S/CL (JS/IL	US .Depth	DS/CL	DS/IL	DS C.Depth	Ctrl	US/MH	
\$3.000 3 37.220 32.220 4.850 37.220 32.080 4.990 1 \$1.001 2 37.220 32.220 4.700 37.060 32.060 4.700 1 \$4.000 5 37.220 37.000 0.070 37.220 36.900 0.170 1 * \$5.000 6 37.320 37.080 0.090 37.220 36.900 0.170 1 * \$5.000 6 37.320 37.080 0.090 37.220 36.900 0.170 1 \$6.000 7 37.220 36.911 0.209 37.220 36.906 0.214 1 \$6.001 8 37.220 36.906 0.214 37.220 36.900 0.220 0rifice 1 \$4.001 5 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.06	S1.000 1 37	.470 3	2.470	4.700	37.220	32.230	4.690)	1200	
\$1.001 2 37.220 32.220 4.700 37.060 32.060 4.700 1 \$4.000 5 37.220 37.000 0.070 37.220 36.900 0.170 1 * \$5.000 6 37.320 37.080 0.090 37.220 36.900 0.170 1 \$6.000 7 37.220 36.911 0.209 37.220 36.906 0.214 1 \$6.001 8 37.220 36.906 0.214 37.220 36.900 0.220 orifice 1 \$4.001 5 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 31.760 4.700 1	S2.000 2 37	.220 3	2.220	4.850	37.220	32.120	4.950)	1	
\$4.000 \$5 \$7.220 \$7.000 0.070 \$7.220 \$6.900 0.170 1 * \$5.000 6 \$7.320 \$7.080 0.090 \$7.220 \$6.900 0.170 1 \$6.000 \$7 \$7.220 \$6.911 0.209 \$7.220 \$6.906 0.214 1 \$6.001 \$8 \$7.220 \$6.906 0.214 \$7.220 \$6.900 0.220 orifice 1 \$4.001 \$5 \$7.220 \$6.900 0.170 \$7.060 \$2.060 \$4.850 Weir 1 x 1000 * \$7.000 13 \$6.920 \$6.770 0.000 \$7.060 \$2.060 \$4.850 1 * \$1.002 3 \$7.060 \$2.060 \$4.700 \$4.700 1	\$3.000 3 37	.220 3	2.220	4.850	37.220	32.080	4.990)	1	
<pre>* \$5.000 6 37.320 37.080 0.090 37.220 36.900 0.170 1 \$6.000 7 37.220 36.911 0.209 37.220 36.906 0.214 1 \$6.001 8 37.220 36.906 0.214 37.220 36.900 0.220 orifice 1 \$4.001 5 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 36.760 31.760 4.700 1</pre>										
\$6.000 7 37.220 36.911 0.209 37.220 36.906 0.214 1 \$6.001 8 37.220 36.906 0.214 37.220 36.900 0.220 orifice 1 \$4.001 5 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 31.760 4.700 1										
\$6.001 8 37.220 36.906 0.214 37.220 36.900 0.220 Orifice 1 \$4.001 5 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 36.760 31.760 4.700 1										
\$4.001 5 37.220 36.900 0.170 37.060 32.060 4.850 Weir 1 x 1000 * \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 36.760 31.760 4.700 1										
* \$7.000 13 36.920 36.770 0.000 37.060 32.060 4.850 1 * \$1.002 3 37.060 32.060 4.700 36.760 31.760 4.700 1		0					0.220		-	
* S1.002 3 37.060 32.060 4.700 36.760 31.760 4.700 1										
55.000 II 50.000 50.400 0.000 51.700 4.050 I										
©1982-2011 Micro Drainage Ltd	- 50.000 II 30							,	1	

URS Infrastructur	e & E	Enviro	nment	UK L1	td		Pag	ge 2			
Scott House											
Alencon Link							٢.	v_7A		2	\sim
Basingstoke RG21	7PP										
Date 08/03/2013 0	9:35	D	esigne	ed by	34299r	nc			<u> </u>	Jo Ca	00
File SW_F_Med_Inf	iltr.	CI	hecked	d by							
Micro Drainage		N	etworl	< W.12	2.6						
:	_		-			ls for T.E.			DIA		
	_		-		I.Area	T.E.	k	HYD			
	PN 1	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	k (mm)	HYD SECT			
* S9 * S1	PN 1	Length (m) 3.765	Fall (m) 4.690 0.020	Slope (1:X) 0.8 171.7	I.Area (ha) 0.000 0.000	T.E. (mins) 5.00	k (mm) 0.600	HYD SECT °	(mm) 150 300	us/mh	
* S9 * S1 PN U	PN 1	Length (m) 3.765 3.434	Fall (m) 4.690 0.020 US/IL	Slope (1:X) 0.8 171.7 US	I.Area (ha) 0.000 0.000 DS/ oth (m	T.E. (mins) 5.00 0.00	k (mm) 0.600 0.600 IL	HYD SECT O DS	(mm) 150 300 Ctrl	US/MH (mm)	

* \$9.000 12 36.600 36.450 0.000 36.760 31.760 4.850 1

* S1.003 4 36.760 31.760 4.700 36.740 31.740 4.700 1

URS Infrastructure & Envi	ronment UK Ltd	Page 3
Scott House		
Alencon Link		
Basingstoke RG21 7PP		LULICHO ON
Date 08/03/2013 09:35	Designed by 34299mc)))))))))))))))))
File SW_F_Med_Infiltr	Checked by	
Micro Drainage	Network W.12.6	

Online Controls for Storm

Orifice Manhole: S8, DS/PN: S6.001, Volume (m³): 0.0

Diameter (m) 0.040 Discharge Coefficient 0.600 Invert Level (m) 36.906

Weir Manhole: S5, DS/PN: S4.001, Volume (m³): 0.2

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 37.000

©1982-2011 Micro Drainage Ltd

URS Infrastructure & En	nvironment UK	Ltd	Page 4	
Scott House				
Alencon Link				
Basingstoke RG21 7PP				
Date 08/03/2013 09:35	Designed b	y 34299mc		
File SW_F_Med_Infiltr.	Checked by			
Micro Drainage	Network W.	12.6		
Cellul	<u>Storage Stru</u> ar Storage Ma	nctures for St		
Infiltration	Coefficient Base Coefficient Side	(m/hr) 0.01000	Porosity	0.95
Depth (m) Area (n	n²) Inf. Area (m	1 ²) Depth (m) Ar	ea (m²) Inf. Ar	ea (m²)
0.000 11	1.6 11	.6 0.151	0.0	15.0
		.0		
m 1	on Dond Mart		N. CA 001	
Tank	or Pond Manh	UIE: 50, DS/PI	N. 34.UUL	
	Invert Le	vel (m) 36.900		
De	epth (m) Area (m		ea (m²)	
	0.000 11	.6 0.113	11.6	
		I.		
	©1982-2011 M	icro Drainage	Ltd	
		2		

TIDC

APPENDIX D – LAMBETH RAIN GARDEN PREDICTOR TOOL

Predictor Tool example, based on the Chatsworth Way Rain Garden. The URS Lambeth Rain Garden Predictor Tool v2.0 (47062094 - URS Lambeth Rain Garden Predictor Tool_v2.0.xls) has been provided electronically alongside this report.

eadsheet version ly valid for use	n 2.0 within the Ardl	ui Road /	Chatsw	orth Wa	y area o	f the Lon	don Bor	ough of	f Lambe	th (shoul	d not be	used to	inform	detailed	design)							
Rain Garde	en total impermeable	catchment	area (m²)	130		surface s	torage vol	ume (m³)	1.34	÷.	cellular s	storage volu	ume (m³)	1.74	av	erage infil	tration (litre	s / hour)	72			
cted depth (mm)	26.49	Volu	me of rur	noff (m³)	3.4437	Volume o	f dischar	ae to sev	wer (m³)	0												
cted duration (hr)	5.25 'olume of in				0.378	Drain dow	n time af	ter event	t (hours)	42.6												
		0.08	0.17	0.25	0.33	0.42	0.5	0.58	0.67	0.75	0.83	0.92	1	1.5	2	5	10	20	50	100	200	500
ration	Duration y minutes 1					/earrainfy 5 months 6											vear rain fy 10 vears 2					
urs 0.25	minutes 1	3.46	2 months 4.39	5 months 4 5.04	+ months : 5.56	6 months	6.39	6.73	o months : 7.04	9 months 7.33	7.6	7.85	2 months 8.09	9.29	years 5 10.24	years 14	10 years 2 17.73	22.45	30.69	38.87	49.23	67.27
0.5	30	4.52	5.68	6.47	7.1	7.64	8.1	8.52	8.9	9.25	9.57	9.87	10.15	11.58	12.72	17.13	21.45	26.87	36.19	45.33	56.79	76.48
0.75	45	5.29	6.59	7.49	8.2	8.8	9.32	9.78	10.2	10.59	10.95	11.28	11.6	13.18	14.43	19.27	23.98	29.85	39.86	49.61	61.74	82.44
1	60	5.91	7.33	8.3	9.07	9.73	10.29	10.79	11.24	11.66	12.04	12.41	12.74	14.44	15.79	20.95	25.96	32.16	42.68	52.88	65.51	86.95
1.25	75	6.44	7.96	9	9.82	10.51	11.11	11.64	12.12	12.56	12.97	13.35	13.71	15.51	16.93	22.36	27.6	34.07	45.01	55.57	68.59	90.61
1.5	90	6.9	8.51	9.61	10.47	11.2	11.83	12.38	12.89	13.35	13.78	14.18	14.56	16.44	17.92	23.58	29.02	35.72	47.01	57.86	71.22	93.72
1.75	105	7.33	9.01	10.16	11.06	11.82	12.47	13.05	13.58	14.06	14.5	14.92	15.31	17.26	18.8	24.66	30.28	37.18	48.77	59.88	73.52	96.44
2	120	7.71	9.47	10.66	11.59	12.38	13.06	13.66	14.21	14.7	15.16	15.6	16	18.01	19.6	25.64	31.41	38.49	50.34	61.68	75.57	98.85
2.25	135	8.07	9.89	11.12	12.08	12.9	13.6	14.22	14.78	15.29	15.77	16.21	16.63	18.7	20.33	26.53	32.44	39.68	51.77	63.31	77.43	101.03
2.5	150	8.41	10.28	11.55	12.54	13.38	14.1	14.73	15.32	15.84	16.33	16.79	17.21	19.34	21.01	27.36	33.4	40.78	53.09	64.81	79.13	103.02
2.75	165	8.72	10.65	11.95	12.97	13.83	14.57	15.22	15.82	16.36	16.85	17.32	17.76	19.94	21.65	28.13	34.29	41.8	54.3	66.2	80.7	104.85
3	180	9.02	11	12.33	13.37	14.26	15.01	15.68	16.29	16.84	17.35	17.83	18.27	20.5	22.24	28.85	35.12	42.75	55.44	67.49	82.16	106.55
3.25	195	9.3	11.33	12.69	13.76	14.66	15.43	16.11	16.73	17.3	17.82	18.3	18.76	21.03	22.81	29.53	35.9	43.64	56.51	68.7	83.53	108.14
3.5	210	9.57	11.64	13.03	14.12	15.04	15.83	16.52	17.16	17.73	18.26	18.76	19.22	21.53	23.34	30.17	36.64	44.49	57.51	69.84	84.81	109.63
3.75	225 240	9.83	11.94 12.23	13.36 13.67	14.47	15.41 15.76	16.21 16.57	16.92 17.29	17.56 17.95	18.14	18.68 19.09	19.19 19.6	19.66 20.08	22.01 22.47	23.85 24.33	30.78 31.37	37.34	45.29 46.06	58.46 59.37	70.92 71.94	86.03	111.04
4	240	10.07 10.31	12.23	13.67	14.81 15.13	15.76	16.57	17.65	17.95	18.54 18.92	19.09	19.6	20.08	22.47	24.33	31.37	38.01 38.65	46.06	60.23	71.94	87.18 88.27	112.38 113.65
4.25	235	10.51	12.5	14.27	15.13	16.42	17.26	17.65	18.68	19.29	19.46	20.38	20.46	23.33	24.0	32.46	39.26	40.79	61.06	73.85	89.32	114.85
4.75	285	10.76	13.03	14.55	15.73	16.73	17.58	18.33	19.02	19.64	20.21	20.75	21.24	23.73	25.67	32.97	39.85	48.15	61.85	74.74	90.32	116.01
5	300	10.98	13.28	14.82	16.02	17.03	17.89	18.66	19.35	19.98	20.56	21.1	21.6	24.12	26.09	33.47	40.41	48.8	62.61	75.6	91.28	117.12
5.25	315	11.19	13.52	15.08	16.3	17.32	18.2	18.97	19.67	20.31	20.89	21.44	21.95	24.5	26.49	33.95	40.96	49.42	63.34	76.42	92.2	118.18
5.5	330	11.39	13.75	15.34	16.57	17.6	18.49	19.27	19.98	20.63	21.22	21.78	22.29	24.87	26.87	34.41	41.49	50.02	64.04	77.21	93.09	119.2
5.75	345	11.59	13.98	15.58	16.83	17.88	18.77	19.56	20.29	20.93	21.53	22.1	22.62	25.22	27.25	34.86	42	50.6	64.73	77.98	93.95	120.18
6	360	11.78	14.2	15.82	17.09	18.15	19.05	19.85	20.58	21.24	21.84	22.41	22.94	25.57	27.61	35.29	42.49	51.16	65.39	78.72	94.78	121.13
6.25	375	11.96	14.42	16.06	17.33	18.41	19.32	20.13	20.86	21.53	22.14	22.71	23.24	25.9	27.97	35.71	42.97	51.7	66.02	79.44	95.58	122.05
6.5	390	12.15	14.63	16.29	17.58	18.66	19.58	20.4	21.14	21.81	22.43	23.01	23.55	26.23	28.31	36.12	43.44	52.23	66.64	80.13	96.35	122.94
6.75	405	12.32	14.83	16.51	17.81	18.91	19.84	20.66	21.41	22.09	22.71	23.3	23.84	26.54	28.65	36.52	43.89	52.74	67.24	80.81	97.11	123.8
7	420	12.5	15.03	16.73	18.04	19.15	20.09	20.92	21.68	22.36	22.99	23.58	24.13	26.85	28.97	36.91	44.33	53.24	67.83	81.46	97.84	124.64
7.25	435	12.67	15.23	16.94	18.27	19.38	20.33	21.17	21.94	22.62	23.26	23.85	24.4	27.16	29.29	37.29	44.76	53.73	68.4	82.1	98.55	125.45
7.5	450	12.83	15.42	17.15	18.49	19.61	20.57	21.42	22.19	22.88	23.52	24.12	24.68	27.45	29.61	37.66	45.18	54.2	68.95	82.72	99.24	126.24
7.75	465	13	15.61	17.35	18.7	19.84	20.8	21.66	22.43	23.13	23.78	24.38	24.94	27.74	29.91	38.02	45.59	54.67	69.49	83.33	99.91	127.01
8	480	13.16	15.79	17.55	18.91	20.06	21.03	21.89	22.68	23.38	24.03	24.64	25.21	28.02	30.21	38.37	45.99	55.12	70.02	83.91	100.57	127.76
8.25	495	13.31	15.97	17.74	19.12	20.27	21.26	22.12	22.91	23.62	24.28	24.89	25.46	28.3	30.5	38.72	46.38	55.56	70.53	84.49	101.21	128.49
8.5 8.75	510 525	13.47 13.62	16.15 16.33	17.94 18.12	19.32 19.52	20.49 20.69	21.47 21.69	22.35 22.57	23.14 23.37	23.86 24.09	24.52 24.76	25.14 25.38	25.71 25.96	28.57 28.83	30.78 31.06	39.06 39.39	46.76 47.14	55.99 56.41	71.04 71.53	85.05 85.6	101.83 102.44	129.2
8.75 9	525	13.62	16.33	18.12	19.52	20.69	21.69	22.57	23.37	24.09	24.76	25.38	25.96	28.83	31.06	39.39	47.14	56.83	71.53	86.14	102.44	129.9 130.57
9.25	540	13.77	16.5	18.49	19.72	20.9	21.9	22.79	23.59	24.52	24.99	25.62	26.2	29.09	31.34	40.03	47.86	57.23	72.01	86.66	103.04	130.57
9.5	570	14.06	16.83	18.67	20.1	21.1	22.11	23.21	23.01	24.54	25.22	26.08	26.43	29.55	31.87	40.03	48.22	57.63	72.40	87.18	103.62	131.24
9.75	585	14.00	16.99	18.84	20.1	21.29	22.51	23.42	24.03	24.76	25.66	26.00	26.9	29.84	32.13	40.65	48.56	58.02	73.4	87.68	104.15	132.52
10	600	14.34	17.15	19.02	20.26	21.45	22.51	23.62	24.24	24.50	25.88	26.52	20.9	30.09	32.39	40.05	48.9	58.4	73.84	88.18	104.75	132.52
10.25	615	14.48	17.31	19.19	20.64	21.87	22.9	23.82	24.65	25.4	26.09	26.74	27.34	30.32	32.64	41.24	49.23	58.77	74.27	88.66	105.84	133.75